1,111
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Comparison of Soil Higher Fungal Communities between Dead and Living Abies koreana in Mt. Halla, the Republic of Korea

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 364-372 | Received 01 Apr 2020, Accepted 13 Aug 2020, Published online: 12 Sep 2020

References

  • Rinnan R, Bååth E. Differential utilization of carbon substrates by bacteria and fungi in Tundra soil. Appl Environ Microbiol. 2009;75(11):3611–3620.
  • Allen MF, Swenson W, Querejeta JI, et al. Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Annu Rev Phytopathol. 2003;41:271–303.
  • Smith SE, Read DJ. 2008. Mycorrhizal symbiosis. 3rd ed. New York (NY): Academic Press.
  • Hacskaylo E. Mycorrhiza: the ultimate in reciprocal parasitism? BioScience. 1972;22(10):577–582.
  • Kwak M, Hong JK, Park JH, Lee BY, et al. Genetic assessment of Abies koreana (Pinaceae), the endangered Korean fir, and conservation implications. Conserv Genet. 2017;18(5):1165–1176.
  • Kim NS, Lee HC. A study on changes and distributions of Korean fir in sub-alpine zone. J Korean Environ Restor Technol. 2013;16(5):49–57.
  • Ahn US, Kim DS, Yun YS, et al. The inference about the cause of death of Korean Fir in Mt. Halla through the analysis of spatial dying pattern – Proposing the possibility of excess soil moisture by climate changes. Kor J Agri for Met. 2018;21:1–28.
  • Kang SJ. Regeneration process of subalpine coniferous forest in Mt. Jiri. J Ecol Environ. 1984;7:185–193.
  • Park WK, Seo JW. A dentroclimatic analysis on Abies koreana in Cheonwang-bong area of Mt. Chiri Korea. Kor J Quat Res. 1999;13:25–33.
  • Lee CS, Cho HJ. Structure and dynamics of Abies koreana Wilson community in Mt. Gaya. Kor J Ecol. 1993;16:75–91.
  • Koo KA, Park WK, Kong WS. Dendrochronological analysis of Abies koreana W. at Mt. Halla, Korea: effects of climate change on the growths. Kor J Ecol. 2001;24:281–288.
  • Koh JG, Kim DS, Kim JG, et al. Growth dynamics of Korean fir in Mt. Halla. Hallasan Res Rep. 2015;14:9–25.
  • Sim MY, Eo JK, Eom AH. Diversity of Ectomycorrhizal fungi of Abies koreana at Mt. Halla. Kor J Mycol. 2009;37(2):134–138.
  • Lee JE, Eom AH. Ectomycorrhizal fungal diversity on Abies koreana and Taxus cuspidata at two altitudes in Mt. Halla. Kor J Mycol. 2019;47:199–208.
  • Jumpponen A, Jones KL, Mattox JD, et al. Massively parallel 454-sequencing of fungal communities in Quercus spp. ectomycorrhizas indicates seasonal dynamics in urban and rural sites. Mol Ecol. 2010;19:41–53.
  • Lim YW, Kim BK, Kim C, et al. Assessment of soil fungal communities using pyrosequencing. J Microbiol. 2010;48(3):284–289.
  • Kim CS, Nam JW, Jo JW, et al. Studies on seasonal dynamics of soil-higher fungal communities in Mongolian oak-dominant Gwangneung forest in Korea. J Microbiol. 2016;54(1):14–22.
  • Kim CS, Han SK, Nam JW, et al. Fungal communities in a Korean red pine stand, Gwangneung forest. Kor J Asia Pac Biodivers. 2017;10(4):559–572.
  • Buée M, Courty PE, Mignot D, et al. Soil niche effect on species diversity and catabolic activities in an ectomycorrhizal community. Soil Biol Biochem. 2007;39(8):1947–1955.
  • Petrosino JF, Highlander S, Luna RA, et al. Metagenomic pyrosequencing and microbial identification. Clin Chem. 2009;55(5):856–866.
  • Nagano Y, Nagahama T, Hatada Y, et al. Fungal diversity in deep-sea sediments – the presence of novel fungal groups. Fungal Ecol. 2010;3(4):316–325.
  • Voříšková J, Brabcová V, Cajthaml T, et al. Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytol. 2014;201(1):269–278.
  • Martin JP, Haider K. Biodegradation of C-labeled model and cornstalk lignins, phenols, model phenolase humic polymers, and fungal melanins as influenced by a readily available carbon source and soil. Appl Environ Microbiol. 1979;38(2):283–289.
  • Amelung W, Lobe I, Du Preez CC. Du Preez CC. Fate of microbial residues in sandy soils of the South African highveld as influenced by prolonged arable cropping. Eur J Soil Sci. 2002;53(1):29–35.
  • White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and application. New York (NY): Academic Press; 1990. p. 315–322.
  • Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–336.
  • Kõljalg U, Nilsson RH, Abarenkov K, et al. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 2013;22(21):5271–5277.
  • Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996–998.
  • Oksanen J, Blanchet FG, Friendly M, et al. 2019. Vegan: community ecology package. Available from: https://cran.r-project.org/web/packages/vegan/vegan.pdf(internet)
  • Allington WB, Chamberlain DW. Brown stem rot of soybean. Phytopathology. 1948;38:793–802.
  • Di Marco S, Calzarano F, Osti F, et al. Pathogenicity of fungi associated with a decay of kiwifruit. Austral Plant Pathol. 2004;33(3):337–342.
  • Travadon R, Lawrence DP, Rooney-Latham S, et al. Cadophora species associated with wood-decay of grapevine in North America. Fungal Biol. 2015;119(1):53–66.
  • Blanchett RA, Held BW, Jurgens JA, et al. Wood-destroying soft rot fungi in the historic expedition huts of Antarctica. Appl Environ Microbiol. 2004;70(3):1328–1335.
  • Tedersoo L, Sánchez-Ramírez S, Kõljalg U, et al. High-level classification of the fungi and a tool for evolutionary ecological analyses. Fungal Divers. 2018;90:135–159.
  • Branco S, Ree RH. Serpentine soils do not limit mycorrhizal fungal diversity. PLoS One. 2010;5(7):e11757.
  • Gao Q, Yang ZL. Ectomycorrhizal fungi associated with two species of Kobresia in an alpine meadow in the eastern Himalaya. Mycorrhiza. 2010;20(4):281–287.
  • Orlovich DA, Draffin SJ, Daly RA, et al. Piracy in the high trees: ectomycorrhizal fungi from an aerial ‘canopy soil’ microhabitat. Mycologia. 2013;105(1):52–60.
  • Kühdorf K, Münzenberger B, Begerow D, et al. Leotia cf. lubrica forms arbutoid mycorrhiza with Comarostaphylis arbutoides (Ericaceae). Mycorhiza. 2015;25(2):109–120.
  • Argüelles-Moyao A, Garibay-Orijel R, Márquez-Valdelamar LM, et al. Clavulina-Membranomyces is the most important lineage within the highly diverse ectomycorrhizal fungal community of Abies religiosa. Mycorrhiza. 2017;27(1):53–65.
  • Unuk T, Martinović Finžgar D, Šibanc N, et al. Root-associated fungal communities from two phenologically contrasting silver fir (Abies alba Mill.) groups of trees. Front Plant Sci. 2019;10:214.
  • Rudawska M, Pietras M, Smutek I, et al. Ectomycorrhizal fungal assemblages of Abies alba Mill. outside its native range in Poland. Mycorrhiza. 2016;26(1):57–65.
  • Tian J, Qiao Y, Wu B, et al. Ecological succession pattern of fungal community in soil along a retreating glacier. Front Microbiol. 2017;8:1028.
  • Lakhanpal TN. Ectomycorrhiza-an overview. In: Mukerji, KG, Chamola BP, Singh J, editors. Mycorrhizal biology. New York (NY): Kluwer Academic/Plenum; 2000. p.101–118.
  • Ważny R, Kowalski S. Ectomycorrhizal fungal communities of silver-fir seedlings regenerating in fir stands and larch forecrips. Trees. 2017;31(3):929–939.
  • Reverchon F, Ortega-Larrocea MP, Pérez-Moreno J, et al. Changes in community structure of ectomycorrhizal fungi associated with Pinus montezumae across a volcanic soil chronosequence at Sierra Chichinautzin, Mexico. Can J for Res. 2010;40(6):1165–1174.