1,587
Views
15
CrossRef citations to date
0
Altmetric
Research Articles

Xylanolytic and Ethanologenic Potential of Gut Associated Yeasts from Different Species of Termites from India

, , , , , & ORCID Icon show all
Pages 501-511 | Received 01 May 2020, Accepted 28 Sep 2020, Published online: 21 Oct 2020

References

  • Kurtzman CP, Fell JW, Boekhout T. The yeasts: a taxonomic study. 5th ed. Amsterdam (Netherlands): Elsevier; 2011.
  • Starmer WT, Lachance MA. Yeast ecology. In: Kurtzman CP, Fell JW, Boekhout Hiroshima, editors. The yeasts. 5th ed. Amsterdam (Netherlands): Elsevier; 2011. p. 65–83.
  • Suh SO, McHugh JV, Pollock DD, et al. The beetle gut: a hyperdiverse source of novel yeasts. Mycol Res. 2005;109(Pt 3):261–265.
  • Suh SO, Marshall CJ, McHugh JV, et al. Wood ingestion by passalid beetles in the presence of xylose-fermenting gut yeasts. Mol Ecol. 2003;12(11):3137–3145.
  • Suh SO, Gibson CM, Blackwell M. Metschnikowia chrysoperlae sp. nov., Candida picachoensis sp. nov. and Candida pimensis sp. nov., isolated from the green lacewings Chrysoperla comanche and Chrysoperla carnea (Neuroptera: Chrysopidae). Int J Syst Evol Microbiol. 2004;54(Pt 5):1883–1890.
  • Blackwell M. Made for each other: ascomycete yeasts and insects. Microbiol Spectr. 2017;5:945–962.
  • Brune A. Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol. 2014;12(3):168–180.
  • Schäfer A, Konrad R, Kuhnigk T, et al. Hemicellulose-degrading bacteria and yeasts from the termite gut. J Appl Bacteriol. 1996;80(5):471–478.
  • Prillinger H, Messner R, König H, et al. Yeasts associated with termites: a phenotypic and genotypic characterization and use of coevolution for dating evolutionary radiations in asco- and basidiomycetes. Syst Appl Microbiol. 1996;19(2):265–283.
  • Handel S, Wang T, Yurkov AM, et al. Sugiyamaella mastotermitis sp. nov. and Papiliotrema odontotermitis f.a., sp. nov. from the gut of the termites Mastotermes darwiniensis and Odontotermes obesus. Int J Syst Evol Microbiol. 2016;66(11):4600–4608.
  • Ali SS, Wu J, Xie R, et al. Screening and characterizing of xylanolytic and xylose-fermenting yeasts isolated from the wood-feeding termite, Reticulitermes chinensis. PLoS One. 2017;12(7):e0181141.
  • Kumar S, Singh SP, Mishra IM, et al. Recent advances in production of bioethanol from lignocellulosic biomass. Chem Eng Technol. 2009;32(4):517–526.
  • Ohkuma M, Yuzawa H, Amornsak W, et al. Molecular phylogeny of Asian termites (Isoptera) of the families Termitidae and Rhinotermitidae based on mitochondrial COII sequences. Mol Phylogenet Evol. 2004;31(2):701–710.
  • Aamir S, Sutar S, Singh SK, et al. A rapid and efficient method of fungal genomic DNA extraction, suitable for PCR based molecular methods. Plant Pathol Quarant. 2015;5(2):74–81.
  • Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;172(8):4238–4246.
  • Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016;33(7):1870–1874.
  • Lone MA, Wani MR, Sheikh SA, et al. Evaluation of cellulase enzyme secreted by some common and stirring Rhizoshere fungi of Juglans regia L.by DNS Method. J Enzym Research. 2012;3:18–22.
  • Lara CA, Santos RO, Cadete RM, et al. Identification and characterisation of xylanolytic yeasts isolated from decaying wood and sugarcane bagasse in Brazil. Antonie Van Leeuwenhoek. 2014;105(6):1107–1119.
  • Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31(3):426–428.
  • Yan J, Wei Z, Wang Q, et al. Bioethanol production from sodium hydroxide/hydrogen peroxide-pretreated water hyacinth via simultaneous saccharification and fermentation with a newly isolated thermotolerant Kluyveromyces marxianu strain. Bioresour Technol. 2015;193:103–109.
  • Borzani W, Schmidell W, Lima UA, et al. Biotecnologia industrial: engenharia bioquímica. Vol. 2. São Paulo: Edgard Blücher; 2001.
  • Sharma S, Nandal P, Arora A. Ethanol production from NaOH pretreated rice straw: a cost effective option to manage rice crop residue. Waste Biomass Valor. 2019;10(11):3427–3434.
  • Shanbhag RR, Sundararaj R. Host range, pest status and distribution of wood destroying termites of India. J Trop Asian Entomol. 2012; 2:12–27.
  • Adsul MG, Bastawde KB, Gokhale DV. Biochemical characterization of two xylanases from yeast Pseudozyma hubeiensis producing only xylooligosaccharides. Bioresour Technol. 2009;100(24):6488–6495.
  • Collins T, Gerday C, Feller G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev. 2005;29(1):3–23.
  • Stevens BJH, Payne J. Cellulase and xylanase production by yeasts of the genus Trichosporon. J Gen Microbiol. 1977;100(2):381–393.
  • Saha BC. Hemicellulose bioconversion. J Ind Microbiol Biotechnol. 2003;30(5):279–291.
  • Pandey AK, Kumar M, Kumari S, et al. Evaluation of divergent yeast genera for fermentation-associated stresses and identification of a robust sugarcane distillery waste isolate Saccharomyces cerevisiae NGY10 for lignocellulosic ethanol production in SHF and SSF. Biotechnol Biofuels. 2019;12(1):40.