908
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Geographical Isolation and Root-Associated Fungi in the Marine Terrains: A Step Toward Establishing a Strategy for Acquiring Unique Microbial Resources

ORCID Icon, , , &
Pages 235-248 | Received 16 Nov 2020, Accepted 03 Apr 2021, Published online: 20 May 2021

References

  • Ryan MJ, McCluskey K, Verkleij G, et al. Fungal biological resources to support international development: challenges and opportunities. World J Microbiol Biotechnol. 2019;35(9):139.
  • Kevin M. A review of living collections with special emphasis on sustainability and its impact on research across multiple disciplines. Biopreserv Biobank. 2017;15(1):20–30.
  • Park JM, Hong JW, Son JS, et al. A strategy for securing unique microbial resources—focusing on Dokdo islands-derived microbial resources. Israel J Ecol Evol. 2018;64(1–4):1–11.
  • Bloemberg GV, Lugtenberg BJ. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol. 2001;4:343–350.
  • Li HB, Singh RK, Singh P, et al. Genetic diversity of nitrogen-fixing and plant growth promoting Pseudomonas species isolated from sugarcane rhizosphere. Front Microbiol. 2017;14(8):1268.
  • Rohini S, Aswani R, Kannan M, et al. Culturable endophytic bacteria of ginger rhizome and their remarkable multi-trait plant growth-promoting features. Curr Microbiol. 2017;75:505–511.
  • Wang Z, Li T, Wen X, et al. Fungal communities in rhizosphere soil under conservation tillage shift in response to plant growth. Front Microbiol. 2017;11(8):1301.
  • Park JM, Hong JW, Lee W, et al. Fungal clusters and their uniqueness in geographically segregated wetlands: a step forward to marsh conservation for a wealth of future fungal resources. Mycobiology. 2020;48(5):351–363.
  • Ministry of Environment, Republic of Korea. The Fifth national report to the convention on biological diversity [Internet]. Sejong (South Korea): MoE; 2014 [cited 2019 October 19]. Available from: https://www.cbd.int/nr5/
  • Ministry of Environment, Republic of Korea. Report: conservation and sustainable use of biological resources [Internet]. Sejong (South Korea): MoE; 2015 [cited 2019 October 19]. Available from: http://hdl.handle.net/20.500.11822/9049
  • Lucas M, Balbín-Suárez A, Smalla K, et al. Root growth, function, and rhizosphere microbiome analyses show local rather than systemic effects in apple plant response to replant disease soil. PLoS One. 2018;13(10):e0204922.
  • Wu L, Chen J, Xiao Z, et al. Barcoded pyrosequencing reveals a shift in the bacterial community in the rhizosphere and rhizoplane of Rehmannia glutinosa under consecutive monoculture. Int J Mol Sci. 2018;19(3):850.
  • Yang Y, Dou Y, Huang Y, et al. Links between soil fungal diversity and plant and soil properties on the Loess plateau. Front Microbiol. 2017;78:2198.
  • Zhang Z, Zhou X, Tian L, et al. Fungal communities in ancient peatlands developed from different periods in the Sanjiang Plain, China. PLoS One. 2017;12(12):e0187575.
  • Lee DS. Geology of Korea. Seoul (Republic of Korea): Kyohak-sa; 1987.
  • Kong WS, David W. The plant geography of Korea with an emphasis on the alpine zones. Berlin (Germany): Springer; 1993.
  • Thorpe RS, Surget-Groba Y, Johansson H. Genetic tests for ecological and allopatric speciation in anoles on an island archipelago. PLoS Genet. 2010;6(4):e1000929.
  • Zhao C, Wang CB, Ma XG, et al. Phylogeographic analysis of a temperate-deciduous forest restricted plant (Bupleurum longiradiatum Turcz.) reveals two refuge areas in China with subsequent refugial isolation promoting speciation. Mol Phylogenet Evol. 2013;68(3):628–643.
  • NGII (National Geographic Information Institute). The geography of Dokdo. Suwon (Republic of Korea): Press of National Geographic Information Institute; 2015.
  • You YH, Park JM, Park JH, et al. Specific rhizobacterial resources: characterization and comparative analysis from contrasting coastal environments of Korea. J Basic Microbiol. 2016;56(1):92–101.
  • CHA (Cultural Heritage Administration), Republic of Korea. Natural heritage of Korea, Dokdo, Cultural Heritage Administration of Korea. Daejeon (Republic of Korea): Cultural Heritage Administration; 2009.
  • FAO. Guidelines for soil description. 4th ed. Rome (Italy): Food and Agriculture Organisation of the United States; 2006.
  • Flores-Vargas RD, O’Hara GW. Isolation and characterization of rhizosphere bacterial with potential for biological control of weed in vineyards. J Appl Microbiol. 2006;100(5):946–954.
  • Vega NOW. A review on beneficial effects of rhizosphere bacterial on soil nutrient availability and plant nutrient uptake. Rev Fac Nac Agron Medellín. 2007;60(1):3621–3643.
  • U.S. Salinity Lab Staff. Diagnosis and improvement of saline and alkali soils. In: Richards LA, editor. Agriculture handbook 60. Washington (DC): USDA; 1954. p. 122–124.
  • FAO, United Nations. Standard operating procedure for soil organic carbon, Walkley-Black method (Titration and colorimetric method). Rome (Italy): Global Soil Laboratory; 2019.
  • Bremner JM, Mulvaney CS. Nitrogen total. In: Page AL, editor. Methods of soil analysis: part 2 chemical and microbiological properties, 9.2.2. 2nd ed. Madison (WI): American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America; 1983.
  • Masella AP, Bartram AK, Truszkowski JM, et al. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinf. 2012;13(1):31.
  • Schloss PD, Westcott SL, Ryabin T, et al. Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–7541.
  • Bengtsson Palme J, Ryberg M, Hartmann M, et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol. 2013;4(10):914–919.
  • Edgar RC, Haas BJ, Clemente JC, et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–2200.
  • Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–336.
  • Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461.
  • Abarenkov K, Nilsson RH, Larsson KH, et al. The UNITE database for molecular identification of fungi—recent updates and future perspectives. New Phytol. 2010;186:281–285.
  • Heck KL, van Belle G, Simberloff D. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology. 1975;56(6):1459–1461.
  • Lambshead PJD, Platt HM, Shaw KM. The detection of differences among assemblages of marine benthic species based on an assessment of dominance and diversity. J Nat Hist. 1983;17(6):859–874.
  • Chao A, Shen TJ, Ma KH, et al. User's guide for program SPADE (Species Prediction And Diversity Estimation). Taiwan: National Tsing Hua University; 2016 [cited 2019 Dec 18]. Available from: http://chao.stat.nthu.edu
  • Sonn YK, Park CW, Zhang YS, et al. Characteristics of soils distributed on the Dokdo Island in South Korea. Korean J Soil Sci. 2011;44(2):187–193.
  • Chapman VJ. Salt marshes and salt deserts of the world. In: Polunin N, editor. Ecology of halophytes. New York (NY): Academic Press; 1974.
  • Lozupone CA, Knight R. Global patterns in bacterial diversity. Proc Natl Acad Sci USA. 2007;104:11436–11440.
  • Ma B, Gong J. A meta- analysis of the publicly available bacterial and archaeal sequence diversity in saline soils. World J Microbiol Biotechnol. 2013;29:2325–2334.
  • Tazi L, Breakwell DP, Harker AR, et al. Life in extreme environments: microbial diversity in Great Salt Lake, Utah. Extremophiles. 2014;18(3):525–535.
  • Zain Ul Arifeen M, Ma YN, Xue YR, et al. Deep-Sea fungi could be the new arsenal for bioactive molecules. Mar Drugs. 2019;18(1):9.
  • Blaud A, Lerch TZ, Phoenix GK, et al. Arctic soil microbial diversity in a changing world. Res Microbiol. 2015;166(10):796–813.
  • Otlewska A, Migliore M, Dybka-Stępień K, et al. When salt meddles between plant, soil, and microorganisms. Front Plant Sci. 2020;16(11):553087.
  • Haegeman B, Hamelin J, Moriarty J, et al. Robust estimation of microbial diversity in theory and in practice. ISME J. 2013;7:1092–1101.
  • Magurran AE. Measuring biological diversity. Oxford (UK): Blackwell Science; 2004.
  • Chao A, Gotelli NJ, Hsieh TC, et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr. 2014;84(1):45–67.
  • Gong Y, Son SJ. A study of oceanic thermal fronts in the Southern Japan Sea. Bull Fish Res Dev Agency. 1982;28:25–54.
  • Park B, Kang GW, Song GM, et al. Ten newly recorded species of insect on Dokdo Island, South Korea. J Species Res. 2017;6(3):280–290.
  • Johnson NC, Graham JH, Smith FA. Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol. 1997;135(4):575–585.
  • Bäumler A, Fang FC. Host specificity of bacterial pathogens. Cold Spring Harb Perspect Med. 2013;3(12):a010041.
  • Morris CE, Moury B. Revisiting the concept of host range of plant pathogens. Annu Rev Phytopathol. 2019;57:63–90.
  • Sati SC, Belwal M. Aquatic hyphomycetes as endophytes of riparian plant roots. Mycologia. 2005;97(1):45–49.
  • Quilliam RS, Jones DL. Fungal root endophytes of the carnivorous plant Drosera rotundifolia. Mycorrhiza. 2010;20(5):341–348.
  • Sapkota R, Jørgensen LN, Nicolaisen M. Spatiotemporal variation and networks in the mycobiome of the wheat canopy. Front Plant Sci. 2017;8:1357.
  • Renker C, Blanke V, Börstler B, et al. Diversity of Cryptococcus and Dioszegia yeasts (Basidiomycota) inhabiting arbuscular mycorrhizal roots or spores. FEMS Yeast Res. 2004;4(6):597–603.
  • Nehls U. Review Mastering ectomycorrhizal symbiosis: the impact of carbohydrates. J Exp Bot. 2008;59(5):1097–1108.
  • Chen K, Wu XQ, Huang MX, et al. First report of brown culm streak of Phyllostachys praecox caused by Arthrinium arundinis in Nanjing, China. Plant Dis. 2014;98(9):1274.
  • Palenzuela J, Barea JM, Ferrol N, et al. Entrophospora nevadensis, a new arbuscular mycorrhizal fungus from Sierra Nevada National Park (southeastern Spain). Mycologia. 2010;102(3):624–632.
  • Amna T, Puri SC, Verma V, et al. Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin. Can J Microbiol. 2006;52(3):189–196.
  • Busby PE, Ridout M, Newcombe G. Fungal endophytes: modifiers of plant disease. Plant Mol Biol. 2016;90(6):645–655.
  • Araújo CAS, Dias LP, Ferreira PC, et al. Responses of entomopathogenic fungi to the mutagen 4-nitroquinoline 1-oxide. Fungal Biol. 2018;122(6):621–628.
  • Toju H, Tanabe AS, Sato H. Network hubs in root-associated fungal metacommunities. Microbiome. 2018;6(1):116.
  • Jaber E, Xiao C, Asiegbu FO. Comparative pathobiology of Heterobasidion annosum during challenge on Pinus sylvestris and Arabidopsis roots: an analysis of defensin gene expression in two pathosystems. Planta. 2014;239(3):717–733.
  • Barelli L, Waller AS, Behie SW, et al. Plant microbiome analysis after Metarhizium amendment reveals increases in abundance of plant growth-promoting organisms and maintenance of disease-suppressive soil. PLoS One. 2020;15(4):e0231150.
  • Lovett B, St Leger RJ. Stress is the rule rather than the exception for Metarhizium. Curr Genet. 2015;1(3):253–261.
  • Karakkat BB, Hockemeyer K, Franchett M, et al. Data for designing two isothermal amplification assays for the detection of root-infecting fungi on cool-season turfgrasses. Data Brief. 2018;20:471–479.
  • Xu F, Yang G, Wang J, et al. Spatial distribution of root and crown rot fungi associated with winter wheat in the north china plain and its relationship with climate variables. Front Microbiol. 2018;25:9.
  • Xu J, Saunders CW, Hu P, et al. Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. Proc Natl Acad Sci USA. 2007;104(47):18730–18735.
  • Kamel NM, Abdel-Motaal FF, El-Zayat SA. Endophytic fungi from the medicinal herb Euphorbia geniculata as a potential source for bioactive metabolites. Arch Microbiol. 2020;202(2):247–255.
  • Zhong X, Peng QY, Li SS, et al. Detection of Ophiocordyceps sinensis in the roots of plants in alpine meadows by nested-touchdown polymerase chain reaction. Fungal Biol. 2014;118(4):359–363.
  • Wang JB, St LR. Wang C. Advances in genomics of entomopathogenic fungi. Adv Genet. 2016;94:67–105.
  • Cullings K, Makhija S. Ectomycorrhizal fungal associates of Pinus contorta in soils associated with a hot spring in Norris Geyser Basin, Yellowstone National Park, Wyoming. Appl Environ Microbiol. 2001;67(12):5538–5543.
  • Barton LL, Northup DE. Microbial ecology. Hoboken (NJ): Wiley-Blackwell; 2011.
  • Park JM, You YH, Back CG, et al. Fungal load in Bradysia agrestis, a phytopathogen-transmitting insect vector. Symbiosis. 2018;74(2):145–158.
  • Park JM, You YH, Park JH, et al. Cutaneous microflora from geographically isolated groups of Bradysia agrestis, an insect vector of diverse plant pathogens. Mycobiology. 2017;45(3):160–171.
  • Baker DK, Rice SJ, Leemon DM, et al. Horizontal transmission of Metarhizium anisopliae (Hypocreales: Clavicipitacea) and the effects of infection on oviposition rate in laboratory populations of Musca domestica (Diptera: Muscidae). Pest Manag Sci. 2017;74(4):987–991.
  • Liao X, Lovett B, Fang W, et al. Metarhizium robertsii produces indole-3-acetic acid, which promotes root growth in Arabidopsis and enhances virulence to insects. Microbiology. 2017;163(7):980–991.
  • Masoudi A, Koprowski JL, Bhattarai UR, et al. Elevational distribution and morphological attributes of the entomopathogenic fungi from forests of the Qinling mountains in China. Appl Microbiol Biotechnol. 2017;102(3):1483–1499.
  • Mukherjee K, Vilcinskas A. The entomopathogenic fungus Metarhizium robertsii communicates with2the insect host Galleria mellonella during infection. Virulence. 2017;9(1):402–413.
  • Pelizza SA, Schalamuk S, Simón MR, et al. Compatibility of chemical insecticides and entomopathogenic fungi for control of soybean defoliating pest, Rachiplusia nu. Rev Argent Microbiol. 2017;50(2):189–201.
  • Wilke AB, Marrelli MT. Paratransgenesis: a promising new strategy for mosquito vector control. Parasit Vectors. 2015;8:342.
  • Ashraf M, Farooq M, Shakeel M, et al. Influence of entomopathogenic fungus, Metarhizium anisopliae, alone and in combination with diatomaceous earth and thiamethoxam on mortality, progeny production, mycosis, and sporulation of the stored grain insect pests. Environ Sci Pollut Res Int. 2017;24(36):28165–28174.
  • Kabaluk T, Li-Leger E, Nam S. Metarhizium brunneum - An enzootic wireworm disease and evidence for its suppression by bacterial symbionts. J Invertebr Pathol. 2017;150:82–87.
  • Alexopoulos CJ, Mims CW, Blackwell M. Introductory mycology. 4th ed. Hoboken (NJ): John Wiley & Sons, Inc.; 1996.
  • Hameed A, Gulzar S, Aziz I, et al. Effects of salinity and ascorbic acid on growth, water status, and antioxidant system in a perennial halophyte. AoB Plants. 2015;7:1–11.