1,108
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

High-Temperature-Tolerant Fungus and Oomycetes in Korea, Including Saksenaea longicolla sp. nov.

, & ORCID Icon
Pages 476-490 | Received 09 Aug 2021, Accepted 17 Sep 2021, Published online: 23 Oct 2021

References

  • Putten WHVd. Climate change, aboveground-belowground interactions, and species' range shifts. Annu Rev Ecol Evol Syst. 2012;43(1):365–383.
  • Shade A, Peter H, Allison SD, et al. Fundamentals of microbial community resistance and resilience. Front Microbiol. 2012;3:417.
  • Singh BK, Bardgett RD, Smith P, et al. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol. 2010;8(11):779–790.
  • Classen AT, Sundqvist MK, Henning JA, et al. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: what lies ahead? Ecosphere. 2015;6(8):1–12.
  • Barcenas-Moreno G, Gomez-Brandon M, Rousk J, et al. Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Global Change Biol. 2009;15(12):2950–2957.
  • Schimel J, Balser TC, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function. Ecology. 2007;88(6):1386–1394.
  • Compant S, Sessitsch A, Van Der Heijden MGA. Climate change effects on beneficial plant–microorganism interactions. FEMS Microbiol Ecol. 2010;73(2):197–214.
  • Larionova AA, Yevdokimov IV, Bykhovets SS. Temperature response of soil respiration is dependent on concentration of readily decomposable C. Biogeosciences. 2007;4(6):1073–1081.
  • Andrew C, Halvorsen R, Heegaard E, et al. Continental‐scale macrofungal assemblage patterns correlate with climate, soil carbon and nitrogen deposition. J Biogeogr. 2018;45(8):1942–1953.
  • Mohan JE, Cowden CC, Baas P, et al. Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: mini-review. Fungal Ecol. 2014;10:3–19.
  • Boddy L, Büntgen U, Egli S, et al. Climate variation effects on fungal fruiting. Fungal Ecol. 2014;10:20–33.
  • Scott J, Burgess T, Hardy G, et al. Climate modelling to determine the impacts of Phytophthora cinnamomi under future climate scenarios. Western Australia: Centre for Phytophthora Science and Management; 2013.
  • Ghini R, Hamada E, Bettiol W. Climate change and plant diseases. Sci Agric. 2008;65:98–107.
  • Boyero L, Pearson RG, Gessner MO, et al. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecol Lett. 2011;14(3):289–294.
  • Woodward G, Perkins Daniel M, Brown Lee E. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc Lond B Biol Sci. 2010;365(1549):2093–2106.
  • Döll P, Zhang J. Impact of climate change on freshwater ecosystems: a global-scale analysis of ecologically relevant river flow alterations. Hydrol Earth Syst Sci. 2010;14(5):783–799.
  • Grossart H-P, Van den Wyngaert S, Kagami M, et al. Fungi in aquatic ecosystems. Nat Rev Microbiol. 2019;17(6):339–354.
  • Grossart H-P, Rojas-Jimenez K. Aquatic fungi: targeting the forgotten in microbial ecology. Curr Opin Microbiol. 2016;31:140–145.
  • Marano A, Jesus A, De Souza J, et al. Ecological roles of saprotrophic Peronosporales (Oomycetes, Straminipila) in natural environments. Fungal Ecol. 2016;19:77–88.
  • Song H-J, Sohn B-J. An evaluation of WRF microphysics schemes for simulating the warm-type heavy rain over the Korean peninsula. Asia-Pacific J Atmos Sci. 2018;54(2):225–236.
  • Lee M-H, Ho C-H, Kim J, et al. Assessment of the changes in extreme vulnerability over East Asia due to global warming. Clim Change. 2012;113(2):301–321.
  • Jung I-W, Bae D-H, Kim G. Recent trends of mean and extreme precipitation in Korea. Int J Climatol. 2011;31(3):359–370.
  • Kim Y, Lee S. Trends of extreme cold events in the Central regions of Korea and their influence on the heating energy demand. Weather Clim Extremes. 2019;24:100199.
  • Kim B-M, Son S-W, Min S-K, et al. Weakening of the stratospheric polar vortex by arctic sea-ice loss. Nat Commun. 2014;5(1):4646.
  • Francis JA, Vavrus SJ. Evidence linking arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett. 2012;39(6):L06801.
  • Honda M, Inoue J, Yamane S. Influence of low arctic sea-ice minima on anomalously cold Eurasian winters. Geophys Res Lett. 2009;36(8):L08707.
  • Saksena SB. A new genus of the Mucorales. Mycologia. 1953;45(3):426–436.
  • Claudette L. M., Caballero M., I. S, editors. Microorganism infection of olive ridley eggs. the 12th Annual Workshop on Sea Turtle Biology and Conservation; 1992; Jekyll Island, Georgia: NOAA Technical Memorandum NMFSSEFSC.28.
  • Cheen C-Y. Education in medical mycology of Taiwan. Nihon Ishinkin Gakkai Zasshi. 1987;28(1):32–38.
  • Goos RD. Further observations on soil fungi in Honduras. Mycologia. 1963;55(2):142–150.
  • Joffe AZ, Borut SY. Soil and kernel mycoflora of groundnut fields in Israel. Mycologia. 1966;58(4):629–640.
  • Watanabe T. Pictorial atlas of soil and seed fungi: morphologies of cultured fungi and key to species. 3 ed. Watanabe T, editor. Boca Raton, Florida: CRC press; 2010.
  • Hodges CS. Fungi isolated from Southern Forest tree nursery soils. Mycologia. 1962;54(3):221–229.
  • Farrow WM. Tropical soil fungi. Mycologia. 1954;46(5):632–646.
  • Alvarez E, Garcia-Hermoso D, Sutton DA, et al. Molecular phylogeny and proposal of two new species of the emerging pathogenic fungus saksenaea. J Clin Microbiol. 2010;48(12):4410–4416.
  • Labuda R, Bernreiter A, Hochenauer D, et al. Saksenaea dorisiae sp. nov., a new opportunistic pathogenic fungus from Europe. Int J Microbiol. 2019;2019:6253829.
  • Vukovic A, Vujadinovic M, Rendulic S, et al. Global warming impact on climate change in Serbia for the period 1961–2100. Therm Sci. 2018;22(6 Part A):2168–2267.
  • Baradkar VP, Mathur M, Taklikar S, et al. Fatal rhino-orbito-cerebral infection caused by Saksenaea vasiformis in an immunocompetent individual: first case report from India. Indian J Med Microbiol. 2008;26(4):385–387.
  • Gkegkes ID, Kotrogiannis I, Konstantara F, et al. Cutaneous mucormycosis by Saksenaea vasiformis: an unusual case report and review of literature. Mycopathologia. 2019;184(1):159–167.
  • Relloso S, Romano V, Landaburu MF, et al. Saksenaea erythrospora infection following a serious sailing accident. J Med Microbiol. 2014;63(2):317–321.
  • Kaufman L, Padhye AA, Parker S. Rhinocerebral zygomycosis caused by Saksenaea vasiformis. J Med Vet Mycol. 1988;26(4):237–241.
  • Martin FN, Abad Z, Balci Y, et al. Identification and detection of Phytophthora: reviewing our progress, identifying our needs. Plant Dis. 2012;96(8):1080–1103.
  • Davidson JM, Werres S, Garbelotto M, et al. Sudden oak death and associated diseases caused by Phytophthora ramorum. Plant Health Prog. 2003;4(1):12.
  • Brasier CM, Kirk SA, Delcan J, et al. Phytophthora alni sp. nov. and its variants: designation of emerging heteroploid hybrid pathogens spreading on alnus trees. Mycol Res. 2004;108(10):1172–1184.
  • Erwin DC, Ribeiro OK. Phytophthora diseases worldwide. St. Paul (MN): American Phytopathological Society (APS Press); 1996.
  • Nowicki M, Foolad MR, Nowakowska M, et al. Potato and tomato late blight caused by Phytophthora infestans: an overview of pathology and resistance breeding. Plant Dis. 2012;96(1):4–17.
  • Hansen EM, Reeser PW, Sutton W. Phytophthora beyond agriculture. Annu Rev Phytopathol. 2012;50:359–378.
  • Jung T, Stukely MJC, Hardy GESJ, et al. Multiple new Phytophthora species from ITS clade 6 associated with natural ecosystems in Australia: evolutionary and ecological implications. Persoonia. 2011;26:13–39.
  • Nagel J, Gryzenhout M, Slippers B, et al. Characterization of Phytophthora hybrids from ITS clade 6 associated with riparian ecosystems in South Africa and Australia. Fungal Biol. 2013;117(5):329–347.
  • Oh E, Gryzenhout M, Wingfield BD, et al. Surveys of soil and water reveal a goldmine of Phytophthora diversity in South African natural ecosystems. IMA Fungus. 2013;4(1):123–131.
  • Reeser PW, Sutton W, Hansen EM, et al. Phytophthora species in Forest streams in Oregon and Alaska. Mycologia. 2011;103(1):22–35.
  • Blair JE, Coffey MD, Park SY, et al. A multi-locus phylogeny for Phytophthora utilizing markers derived from complete genome sequences. Fungal Genet Biol. 2008;45(3):266–277.
  • Kroon LP, Brouwer H, de Cock AW, et al. The genus Phytophthora anno 2012. Phytopathology. 2012;102(4):348–364.
  • Nechwatal J, Mendgen K. Widespread detection of Phytophthora taxon salixsoil in the Littoral zone of Lake Constance, Germany. Eur J Plant Pathol. 2006;114(3):261–264.
  • Yang X, Gallegly ME, Hong C. A high-temperature tolerant species in clade 9 of the genus Phytophthora: P. hydrogena sp. nov. Mycologia. 2014;106(1):57–65.
  • Hong C, Richardson PA, Hao W, et al. Phytophthora aquimorbida sp. nov. and Phytophthora taxon 'aquatilis' recovered from irrigation reservoirs and a stream in Virginia, USA. Mycologia. 2012;104(5):1097–1108.
  • Hüberli D, Hardy GSJ, White D, et al. Fishing for Phytophthora from Western Australia’s waterways: a distribution and diversity survey. Australasian Plant Pathol. 2013;42(3):251–260.
  • Sims LL, Sutton W, Reeser P, et al. The Phytophthora species assemblage and diversity in riparian alder ecosystems of Western Oregon, USA. Mycologia. 2015;107(5):889–902.
  • Hansen EM, Reeser PW, Sutton W. Phytophthora borealis and Phytophthora riparia, new species in Phytophthora ITS clade 6. Mycologia. 2012;104(5):1133–1142.
  • White T, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA GD, Sninsky JJ, White TJ, editor. PCR protocols: a guide to methods and applications. New York: Academic Press; 1990. p. 315–322.
  • Kurtzman CP, Robnett CJ. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5' end of the large-subunit (26S) ribosomal DNA gene. J Clin Microbiol. 1997;35(5):1216–1223.
  • O'Donnell K, Lutzoni F, J. Ward T, et al. Evolutionary relationships among mucoralean fungi (Zygomycota): evidence for family polyphyly on a large scale. Mycologia. 2001;93(2):286–296.
  • Bala K, Robideau G, Désaulniers N, et al. Taxonomy, DNA barcoding and phylogeny of three new species of Pythium from Canada. Persoonia. 2010;25:22–31.
  • Hudspeth DSS, Nadler SA, Hudspeth MES. cox2 molecular phylogeny of the Peronosporomycetes. Mycobiology. 2000;92(4):674.
  • Choi Y-J, Beakes G, Glockling S, et al. Towards a universal barcode of oomycetes-a comparison of the cox1 and cox2 loci. Mol Ecol Resour. 2015;15(6):1275–1288.
  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780.
  • Vaidya G, Lohman DJ, Meier R. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics. 2011;27(2):171–180.
  • Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–1874.
  • Hansen E, Reeser P, Sutton W, et al. Redesignation of Phytophthora taxon pgchlamydo as Phytophthora chlamydospora sp. nov. N Am Fungi. 2015;10(2):1–14.
  • Wallace SF. Diversity of Phytophthora species in Costa Rica's Tropical Forest. [Master Thesis]: University of Maryland 2015.
  • Crous PW, Wingfield MJ, Burgess TI, et al. Fungal planet description sheets: 558–624. Persoonia. 2017;38:240–384.
  • Crous PW, Wingfield MJ, Burgess TI, et al. Fungal planet description sheets: 469–557. Persoonia. 2016;37:218–403.
  • Blanchet D, Dannaoui E, Fior A, et al. Saksenaea vasiformis infection, French Guiana. Emerg Infect Dis. 2008;14(2):342–344.
  • Vega W, Orellana M, Zaror L, et al. Saksenaea vasiformis infections: case report and literature review. Mycopathologia. 2006;162(4):289–294.
  • Stewardson AJ, Holmes NE, Ellis DH, et al. Cutaneous zygomycosis caused by Saksenaea vasiformis following water-related wound in a 24-year-old immunocompetent woman. Mycoses. 2009;52(6):547–549.
  • Wilson PA. Zygomycosis due to Saksenaea vasiformis caused by a magpie peck. Med J Aust. 2008;189(9):521–522.
  • Padhye AA, Koshi G, Anandi V, et al. First case of subcutaneous zygomycosis caused by Saksenaea vasiformis in India. Diagn Microbiol Infect Dis. 1988;9(2):69–77.
  • Tanphaichitr VS, Chaiprasert A, Suvatte V, et al. Subcutaneous mucormycosis caused by Saksenaea vasiformis in a thalassaemic child: first case report in Thailand. Mycoses. 1990;33(6):303–309.
  • Brasier CM, Cooke DE, Duncan JM, et al. Multiple new phenotypic taxa from trees and riparian ecosystems in Phytophthora gonapodyides-P. megasperma ITS clade 6, which tend to be high-temperature tolerant and either inbreeding or sterile. Mycol Res. 2003;107(3):277–290.
  • Brasier CM, Hamm PB, Hansen EM. Cultural characters, protein patterns and unusual mating behaviour of Phytophthora gonapodyides isolates from Britain and North America. Mycol Res. 1993;97(11):1287–1298.
  • Burgess TI, Webster JL, Ciampini JA, et al. Re-evaluation of Phytophthora species isolated during 30 years of vegetation health surveys in Western Australia using molecular techniques. Plant Dis. 2009;93(3):215–223.
  • Jung T, Blaschke M. Phytophthora root and collar rot of alders in Bavaria: distribution, modes of spread and possible management strategies. Plant Pathol. 2004;53(2):197–208.
  • Huai W-X, Tian G, Hansen EM, et al. Identification of Phytophthora species baited and isolated from Forest soil and streams in northwestern Yunnan province, China. For Path. 2013;43(2):87–103.
  • Browne GT, Ott NJ, Forbes H, et al. First report of Phytophthora chlamydospora causing crown and root rot on almond in California. Plant Dis. 2020;104(7):2033–2033.
  • Türkölmez Ş, Derviş S, Çiftçi O, et al. First report of Phytophthora chlamydospora causing root and crown rot on almond (Prunus dulcis) trees in Turkey. Plant Dis. 2016;100(8):1796–1796.
  • Hong C, Gallegly ME, Richardson PA, et al. Phytophthora irrigata, a new species isolated from irrigation reservoirs and Rivers in Eastern United States of America. FEMS Microbiol Lett. 2008;285(2):203–211.
  • Redondo MA, Boberg J, Stenlid J, et al. Contrasting distribution patterns between aquatic and terrestrial Phytophthora species along a climatic gradient are linked to functional traits. Isme J. 2018;12(12):2967–2980.