951
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Antifungal Activity of Thymol against Aspergillus awamori and Botrytis aclada Isolated from Stored Onion Bulbs

, , , , , & ORCID Icon show all
Pages 475-486 | Received 13 Oct 2022, Accepted 11 Dec 2022, Published online: 29 Dec 2022

References

  • McDonald MR, Jaime M, Hovius MHY. Management of diseases of onions and garlic. In: Naqvi SAMH, editor. Diseases of fruits and vegetables: diagnosis and management, Vol II. Dordrecht, Netherlands: Kluwer Academic Publishers; 2004. p. 149–200.
  • Ji SH, Kim TK, Keum YS, et al. The major postharvest disease of onion and its control with thymol fumigation during low-temperature storage. Mycobiology. 2018;46(3):242–253.
  • Lee JT, Bae DW, Park SH, et al. Occurrence and biological control of post-harvest decay in onion caused by fungi. Plant Pathol J. 2001;17:141–148.
  • Oh JY, Kim KD. Control strategies for pathogenic fungi on stored onion (Allium cepa) and garlic (Allium sativum): a review. Life Sci Nat Resour Res. 2016;24:31–40.
  • Oh JY, Han GD, Jeong JJ, et al. First report of Penicillium georgiense as a fungal pathogen of onion (Allium cepa L.). Crop Prot. 2015;72:83–89.
  • Özer N, Köycü DN. Seed-borne fungal diseases of onion, and their control. In: Mukerji KG, editor. Disease management of fruits and vegetables: fruit and vegetable diseases, Vol. I. Dordrecht, Netherlands: Kluwer Academic Publishers; 2004. p. 281–306.
  • Sang MK, Han GD, Oh JY, et al. Penicillium brasilianum as a novel pathogen of onion (Allium cepa L.) and other fungi predominant on market onion in Korea. Crop Prot. 2014;65:138–142.
  • Chu CL, Liu WT, Zhou T. Fumigation of sweet cherries with thymol and acetic acid to reduce postharvest brown rot and blue mold rot. Fruits. 2001;56(2):123–130.
  • Mari M, Bautista-Baños S, Sivakumar D. Decay control in the postharvest system: role of microbial and plant volatile organic compounds. Postharvest Biol Technol. 2016;122:70–81.
  • Romanazzi G, Lichter A, Gabler FM, et al. Recent advances on the use of natural and safe alternatives to conventional methods to control postharvest gray mold of table grapes. Postharvest Biol Technol. 2012;63(1):141–147.
  • Tripathi P, Dubey NK. Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol Technol. 2004;32(3):235–245.
  • Droby S, Wisniewski M, Macarisin D, et al. Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biol Technol. 2009;52(2):137–145.
  • Burt S. Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol. 2004;94(3):223–253.
  • Negi PS. Plant extracts for the control of bacterial growth: efficacy, stability and safety issues for food application. Int J Food Microbiol. 2012;156(1):7–17.
  • Schillinger U, Geisen R, Holzapfel WH. Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends Food Sci Technol. 1996;7(5):158–164.
  • Isman MB. Plant essential oils for pest and disease management. Crop Prot. 2000;19(8-10):603–608.
  • Antunes MDC, Cavaco AM. The use of essential oils for postharvest decay control. A review. Flavour Fragr. J. 2010;25(5):351–366.
  • Sivakumar D, Bautista-Baños S. A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Prot. 2014;64:27–37.
  • Garcia R, Alves ES, Santos MP, et al. Antimicrobial activity and potential use of monoterpenes as tropical fruits preservatives. Braz J Microbiol. 2008;39(1):163–168.
  • Kumar P, Mishra S, Malik A, et al. Biocontrol potential of essential oil monoterpenes against housefly, Musca domestica (Diptera: Muscidae). Ecotoxicol Environ Saf. 2014;100:1–6.
  • Sartoratto A, Machado ALM, Delarmelina C, et al. Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Braz J Microbiol. 2004;35(4):275–280.
  • Maqbool M, Ali A, Alderson PG. Effect of cinnamon oil on incidence of anthracnose disease and postharvest quality of bananas during storage. Int J Agric Biol. 2010;12:516–520.
  • Pérez-Alfonso CO, Martínez-Romero D, Zapata PJ, et al. The effects of essential oils carvacrol and thymol on growth of Penicillium digitatum and P. italicum involved in lemon decay. Int J Food Microbiol. 2012;158(2):101–106.
  • Sellamuthu PS, Mafune M, Sivakumar D, et al. Thyme oil vapour and modified atmosphere packaging reduce anthracnose incidence and maintain fruit quality in avocado. J Sci Food Agric. 2013;93(12):3024–3031.
  • Arrebola E, Sivakumar D, Bacigalupo R, et al. Combined application of antagonist Bacillus amyloliquefaciens and essential oils for the control of peach postharvest diseases. Crop Prot. 2010;29(4):369–377.
  • Vitoratos A, Bilalis D, Karkanis A, et al. Antifungal activity of plant essential oils against Botrytis cinerea, Penicillium italicum and Penicillium digitatum. Not Bot Hort Agrobot Cluj. 2013;41(1):86.
  • Chillet M, Minier J, Hoarau M, et al. Potential use of thymol to control anthracnose development in mango. Eur J Plant Pathol. 2019;155(3):943–952.
  • Hudaib M, Speroni E, Di Pietra AM, et al. GC/MS evaluation of thyme (Thymus vulgaris L.) oil composition and variations during the vegetative cycle. J Pharm Biomed Anal. 2002;29(4):691–700.
  • Meeran MFN, Javed H, Taee HA, et al. Pharmacological properties and molecular mechanisms of thymol: prospects for its therapeutic potential and pharmaceutical development. Front Pharmacol. 2017;8:380. Article 380.
  • Nickavar B, Mojab F, Dolat-Abadi R. Analysis of the essential oils of two Thymus species from Iran. Food Chem. 2005;90(4):609–611.
  • Hassani A, Fathi Z, Ghosta Y, et al. Evaluation of plant essential oils for control of postharvest brown and gray mold rots on apricot. J Food Saf. 2012;32(1):94–101.
  • Kong J, Xie Y, Yu H, et al. Synergistic antifungal mechanism of thymol and salicylic acid on Fusarium solani. Food Sci Technol. 2021;140:110787.
  • Xu L, Song J-Q, Wang Y-L, et al. Thymol improves salinity tolerance of tobacco by increasing the sodium ion efflux and enhancing the content of nitric oxide and glutathione. BMC Plant Biol. 2022;22(1):31.
  • Ji P, Momol MT, Olson SM, et al. Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions. Plant Dis. 2005;89(5):497–500.
  • De Melo JO, Blank AF, Nunes RDS, et al. Essential oils of Lippia gracilis and Lippia sidoides chemotypes and their major compounds carvacrol and thymol: nanoemulsions and antifungal activity against Lasiodiplodia theobromae. Res Soc Dev. 2022;11(3):e36511326715.
  • Rasooli I, Rezaei MB, Allameh A. Growth inhibition and morphological alterations of Aspergillus Niger by essential oils from Thymus eriocalyx and Thymus x-porlock. Food Cont. 2006;17(5):359–364.
  • Mossini SAG, Arrotéia CC, Kemmelmeier C. Effect of neem leaf extract and neem oil on Penicillium growth, sporulation, morphology and ochratoxin a production. Toxins (Basel). 2009;1(1):3–13.
  • Ahmad A, Khan A, Akhtar F, et al. Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. Eur J Clin Microbiol Infect Dis. 2011;30(1):41–50.
  • Shcherbakova L, Mikirtyuk O, Arslanova L, et al. Studying the ability of thymol to improve fungicidal effects of tebuconazole and difenoconazole against some plant pathogenic fungi in seed or foliar treatments. Front Microbiol. 2021;12:629429.
  • Ranjbar A, Ramezanian A, Shekarforoush S, et al. Antifungal activity of thymol against the main fungai causing pomegranate fruit rot by suppressing the activity of cell wall degrading enzymes. Food Sci Technol. 2022;161:113303.
  • Chen G-Q, Sun D, Yang J-M, et al. Synthesis of sulfonate derivatives of carvacrol and thymol as anti-oomycetes agents. J Asian Nat Prod Res. 2021;23(7):692–702.
  • Liu WT, Chu CL, Zhou T. Thymol and acetic acid vapors reduce postharvest brown rot of apricots and plums. Hort Sci. 2002;37(1):151–156.
  • Peláez AL, Cataño CS, Yepes EQ, et al. Inhibitory activity of lactic and acetic acid on Aspergillus flavus growth for food preservation. Food Cont. 2012;24:177–183.
  • Cho J, Bae RN, Lee SK. Current research status of post-harvest technology of onion (Allium cepa L.). Korean J Hort Sci Tech. 2010;28:522–527.
  • Kim YK, Lee SB, Lee SS, et al. Cultural and chemical approaches for controlling postharvest diseases of garlics. Korean J Pest Sci. 2003;7:139–148.
  • Tyson JL, Fullerton RA. Effect of soil-borne inoculum on incidence of onion black mould (Aspergillus niger). New Zealand Plant Prot. 2004;57:138–141.
  • El-Mougy NS, El-Gamal NG, Abdel-Kader MM. Pre-storage application of some essential oils and food preservatives against black mould incidence of garlic cloves during storage. Arch Phytopathol Plant Prot. 2009;42(11):1059–1068.
  • Raju K, Naik MK. Effect of pre-harvest spray of fungicides and botanicals on storage diseases of onion. Indian Phytopathol. 2006;59:133–141.