115
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Inoculants of Arbuscular Mycorrhizal Fungi Influence Growth and Biomass of Terminalia arjuna under Amendment and Anamendment Entisol

ORCID Icon, ORCID Icon & ORCID Icon
Pages 183-190 | Received 15 Mar 2024, Accepted 23 May 2024, Published online: 17 Jun 2024

References

  • Chandrakala M, Lakhsman K, Maske SP. Indian soils: characteristics, distribution, potentials and constraints. Chron Bioresour Manage. 2021;5:121–127.
  • Bhardwaj AK, Chandra KK. Biomass and carbon stocks of different tree plantations in entisol soil of Eastern Chhattisgarh India. Curr World Environ. 2016;11(3):819–824. doi: 10.12944/CWE.11.3.17.
  • Chandra KK, Bhardwaj AK. Growth, biomass and carbon sequestration by trees in nutrient-deficient Bhata land soil of Bilaspur, Chhattisgarh, India. In: Singh VP, Yadav S, Yadava R, editors. Energy and environment, water science and technology library. Singapore: Springer Nature Singapore Pte Ltd; 2018. p. 39–45.
  • Anthony MA, Crowther TW, van der Linde S, et al. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. ISME J. 2022;16(5):1327–1336. doi: 10.1038/s41396-021-01159-7.
  • Loka SP, Nasution DLS. Revamping of entisol soil physical characteristics with compost treatment. IOP Conf Ser Earth Environ Sci. 2018;122:012090. doi: 10.1088/1755-1315/122/1/012090.
  • Al-Shammary AAG, Kouzani AZ, Kaynak A, et al. Soil bulk density estimation methods: a review. Pedosphere. 2018;28(4):581–596. doi: 10.1016/s1002-0160(18)60034-7.
  • Moore JAM, Anthony MA, Pec GJ, et al. Fungal community structure and function shifts with atmospheric nitrogen deposition. Glob Chang Biol. 2021;27(7):1349–1364. doi: 10.1111/gcb.15444.
  • Planning Commission State Report. Ecological features of Chhattisgarh; 2013. p. 53. Available from: http://planning commission.nic.in
  • Bhardwaj AK, Chandra KK. AMF symbiosis in Forest species plantations and its relationship with major soil nutrients in entisol soil of Bilaspur (C.G.). Life Sci Bull. 2017;14:27–32.
  • Costa CRGd, Silva Fraga VD, Lambais GR, et al. Chemical and physical quality of the entisol in a natural regeneration area in the semiarid region of Paraiba. J Exp Agric Int. 2019;35:1–7. doi: 10.9734/jeai/2019/v35i230202.
  • Javaid A, Khan IH. Mycorrhiza fungi associated with mungbean. Mycopath. 2019;17:45–48.
  • Shahid SA, Zaman M, Heng L. Introduction to soil salinity, sodicity and diagnostics techniques. In: Zaman M, Shahid SA, Heng L, editors. Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Vienna: International Atomic Energy Agency, Springer; 2018. p. 1–42. doi: 10.1007/978-3-319-96190-3_1.
  • Begum N, Qin C, Ahanger MA, et al. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci. 2019;10:1068. doi: 10.3389/fpls.2019.01068.
  • Ganugi P, Masoni A, Pietramellara G, et al. A review of studies from the last twenty years on plant–arbuscular mycorrhizal fungi associations and their uses for wheat crops. Agronomy. 2019;9(12):840. doi: 10.3390/agronomy9120840.
  • Bhardwaj AK, Chandra KK, Kumar R. Water stress changes on AMF colonization, stomatal conductance and photosynthesis of Dalbergia sissoo seedlings grown in entisol soil under nursery condition. Forest Sci Technol. 2023;19(1):47–58. doi: 10.1080/21580103.2023.2167873.
  • Bonfante P, Genre A. Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun. 2010;1(1):48. doi: 10.1038/ncomms1046.
  • Smith SE, Read D. Mycorrhizal symbiosis; 2008. p. 637–768. doi: 10.1016/b978-012370526-6.50020-9.
  • Harrier LA. The arbuscular mycorrhizal symbiosis: a molecular review of the fungal dimension. J Exp Bot. 2001;52(Spec Issue):469–478. doi: 10.1093/jxb/52.suppl_1.469.
  • Kumar R, Bhardwaj AK, Chandra KK, et al. Mycorrhizae: an historical journey of plant association. Chhattis J Sci Technol. 2022;19:437–447.
  • Bhardwaj AK, Chandra KK, Kumar R. Mycorrhizal inoculation under water stress conditions and its influence on the benefit of host microbe symbiosis of Terminalia arjuna species. Bull Natl Res Cent. 2023;47(1):13. doi: 10.1186/s42269-023-01048-3.
  • Aroca R, Ruiz-Lozano JM, Zamarreno AM, et al. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol. 2013;170(1):47–55. doi: 10.1016/j.jplph.2012.08.020.
  • Barea JM, Gryndler M, Lemanceau PH, et al. The rhizosphere of mycorrhizal plants. In: Gianinazzi S, Schuepp H, Barea JM, et al., editors. Mycorrhiza technology in agriculture: from genes to bioproducts. Basel, Switzerland: Birkhauser Verlag; 2002. p. 1–18.
  • Chandra KK. Recovery pattern in diversity and species of ground vegetation and AMF in reclaimed coal mine dumps of Korba (India). Expert Opin Environ Biol. 2014;3:1–12.
  • Al-Karaki G, McMichael B, Zak J. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza. 2004;14(4):263–269. doi: 10.1007/s00572-003-0265-2.
  • Suz LM, Bidartondo MI, van der Linde S, et al. Ectomycorrhizas and tipping points in forest ecosystems. New Phytol. 2021;231(5):1700–1707. doi: 10.1111/nph.17547.
  • Bagheri V, Shamshiri MH, Shirani H, et al. Nutrient uptake and distribution in mycorrhizal pistachio seedlings under drought stress. J Agric Sci Technol. 2012;14:1591–1604. doi: 10.5367/oa.2012.0109.
  • Campbell DJ. Determination and use of soil bulk density in relation to soil compaction. Dev Agric Eng. 1994;11:113–139. doi: 10.1016/B978-0-444-88286-8.50014-3.
  • Han YZ, Zhang JW, Mattson KG, et al. Sample sizes to control error estimates in determining soil bulk density in California forest soils. Soil Sci Soc Am J. 2016;80(3):756–764. doi: 10.2136/sssaj2015.12.0422.
  • Hairiah K, Sitompul SM, Noordwijk MV, et al. Methods for sampling carbon stocks above and below ground, ASB lecture note 4B. Bogor: International Centre for Research in Agroforestry; 2001. p. 23–29.
  • Ministry of Forestry Indonesia. Development of allometric equations for estimating Forest carbon stocks based on field measurement (ground based forest carbon accounting). Indonesia: Centre for Standardization and Environment, Ministry of Forestry; 2011.
  • Gerdemann JW, Nicolson TH. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc. 1963;46(2):235–244. doi: 10.1016/S0007-1536(63)80079-0.
  • Graham JH, Syvertsen JP. Host determinants of mycorrhizal dependency of citrus rootstock seedlings. New Phytol. 1985;101(4):667–676. doi: 10.1111/j.1469-8137.1985.tb02872.x.
  • Vaidya GS, Shrestha K, Khadge BR, et al. Study of biodiversity of arbuscular mycorrhizal fungi in addition with different organic matter in different seasons of Kavre District (Central Nepal). Sci World. 1970;5(5):75–80. doi: 10.3126/sw.v5i5.2660.
  • Deepika S, Kothamasi D. Soil moisture a regulator of arbuscular mycorrhizal fungal community assembly and symbiotic phosphorus uptake. Mycorrhiza. 2015;25(1):67–75. doi: 10.1007/s00572-014-0596-1.
  • Xie X, Weng B, Cai B, et al. Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth and nutrient uptake of Kandelia obovata seedlings in autoclaved soil. Appl Soil Ecol. 2014;75:162–171. doi: 10.1016/j.apsoil.2013.11.009.
  • Wu YH, Wang H, Liu M, et al. Effects of native arbuscular mycorrhizae isolated on root biomass and secondary metabolites of Salvia miltiorrhiza Bge. Front Plant Sci. 2021;12:1–13. doi: 10.3389/fpls.2021.617892.
  • Garg N, Chandel S. Arbuscular mycorrhizal networks: process and functions, a review. Agron Sustain Dev. 2010;30:581–599. doi: 10.1051/agro/2009054.
  • Miransari M. Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol. 2010;12(4):563–569. doi: 10.1111/j.1438-8677.2009.00308.x.
  • Berta G, Fusconi A, Trotta A, et al. Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 in the root system of Allium porrum L. New Phytol. 1990;114(2):207–215. doi: 10.1111/j.1469-8137.1990.tb00392.x.
  • Marschner H, Dell B. Nutrient uptake in mycorrhizal symbiosis. Plant Soil. 1994;159(1):89–102. doi: 10.1007/BF00000098.
  • Chandrasekaran M. Arbuscular mycorrhizal fungi mediated enhanced biomass, root morphological traits and nutrient uptake under drought stress: a meta-analysis. J Fungi. 2022;8(7):660. doi: 10.3390/jof8070660.
  • Parniske M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol. 2008;6(10):763–775. doi: 10.1038/nrmicro1987.
  • Genre A, Chabaud M, Faccio A, et al. Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. Plant Cell. 2008;20(5):1407–1420. doi: 10.1105/tpc.108.059014.
  • Purin S, Rillig MC. The arbuscular mycorrhizal fungal protein glomalin: limitations, progress, and a new hypothesis for its function. Pedobiologia. 2007;51(2):123–130. doi: 10.1016/j.pedobi.2007.03.002.
  • Wang F, Sun Y, Shi Z. Arbuscular mycorrhiza enhances biomass production and salt tolerance of sweet sorghum. Microorganisms. 2019;7(9):289. doi: 10.3390/microorganisms7090289.
  • Priscila SM, Cristiane FDS, Junior MD, et al. Beneficial services of glomalin and arbuscular mycorrhizal fungi in degraded soils in Brazil. Sci Agric. 2022;79:1–13. doi: 10.1590/1678-992X-2021-0064.
  • Ryan MH, Chilvers GA, Dumaresq DC. Colonisation of wheat by VA-mycorrhizal fungi was found to be higher on a farm managed in an organic manner than on a conventional neighbour. Plant Soil. 1994;160(1):33–40. doi: 10.1007/BF00150343.
  • Joner EJ, Jakobsen I. Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter. Soil Biol Biochem. 1995;27(9):1153–1159. doi: 10.1016/0038-0717(95)00047-I.
  • Debashis K, Somdatta G. Aspects, problems and utilization of arbuscular mycorrhizal (AM) application as bio-fertilizer in sustainable agriculture. Curr Res Microb Sci. 2022;3:1–11. doi: 10.1016/j.crmicr.2022.100107.
  • Pauwels R, Graefe J, Bitterlich M. An arbuscular mycorrhizal fungus alters soil water retention and hydraulic conductivity in a soil texture specific way. Mycorrhiza. 2023;33(3):165–179. doi: 10.1007/s00572-023-01106-8.
  • Egboka NT, Fagbola O, Nkwopara UN, et al. Density of arbuscular mycorrhizal fungi and nutrient status of soils in selected land use types and soil depths. Sarhad J Agric. 2022;38(2):633–647. doi: 10.17582/journal.sja/2022/38.2.633.647.
  • Cao Y, Li N, Lin J, et al. Root system-rhizosphere soil-bulk soil interactions in different Chinese fir clones based on fungi community diversity change. Front Ecol Evol. 2022;10:1028686. doi: 10.3389/fevo.2022.1028686.
  • Ghosh S, Verma NK. Growth and mycorrhizal dependency of Acacia mangium Willd. inoculated with three vesicular arbuscular mycorrhizal fungi in lateritic soil. New Forest. 2006;31(1):75–81. doi: 10.1007/s11056-004-4763-7.
  • Sharma MP, Bhatia NP, Adholeya A. Mycorrhizal dependency and growth responses of Acacia nilotica and Albizia lebbeck to inoculation by indigenous AM fungi as influenced by available soil P levels in a semi-arid Alfisol wasteland. New For. 2001;21(1):89–104. doi: 10.1023/A:1010636614005.
  • Renuka G, Rao MS, Kumar VP, et al. Arbuscular mycorrhizal dependency of Acacia melanoxylon R. Proc Natl Acad Sci India Sect B Biol Sci. 2012;82(3):441–446. doi: 10.1007/s40011-012-0025-1.
  • Cardoso Filho JA, Lemos EEP, de Santos TMC, et al. Mycorrhizal dependency of mangaba tree under increasing phosphorus levels Pesqui. Agropec Bras. 2008;43:887–892.
  • Turjaman M, Tamai Y, Santoso E, et al. Arbuscular mycorrhizal fungi increased early growth of two nontimber forest product species Dyera polyphylla and Aquilaria filaria under greenhouse conditions. Mycorrhiza. 2006;16(7):459–464. doi: 10.1007/s00572-006-0059-4.
  • Tawaraya K. Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Sci Plant Nutr. 2003;49(5):655–668. doi: 10.1080/00380768.2003.10410323.