66
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Molecular Identification of a New Species of Absidia (Cunninghamellaceae, Mucorales) Isolated from Soil in Korea

ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 201-206 | Received 02 May 2024, Accepted 05 Jun 2024, Published online: 22 Jun 2024

References

  • Benjamin RK. The merosporangiferous Mucorales. Aliso. 1959;4(2):321–433. doi: 10.5642/aliso.19590402.05.
  • Zhao H, Nie Y, Zong TK, et al. Species diversity, updated classification and divergence times of the phylum Mucoromycota. Fungal Divers. 2023;123:49–157.
  • Van Tieghem P. Troisiéme mémoire sur les Mucorinée. Ann Sci Nat Bot Ser 6. 1878;4:312–399.
  • Hoffmann K. Identification of the genus Absidia (Mucorales, Zygomycetes): a comprehensive taxonomic revision. In: Gherbawy Y, Voigt K, editors. Molecular identification of fungi. Berlin/Heidelberg, Germany: Springer; 2010. p. 439–460.
  • Zong TK, Zhao H, Liu XL, et al. Taxonomy and phylogeny of four new species in Absidia (Cunninghamellaceae, Mucorales) from China. Front Microbiol. 2021;12:677836. doi: 10.3389/fmicb.2021.677836.
  • Cordeiro TRL, Nguyen TTT, Lima DX, et al. Two new species of the industrially relevant genus Absidia (Mucorales) from soil of the Brazilian Atlantic Forest. Acta Bot Bras. 2020;34:549–558.
  • Zhao H, Nie Y, Zong TK, et al. Three new species of Absidia (Mucoromycota) from China based on phylogeny, morphology and physiology. Diversity. 2022;14(2):132. doi: 10.3390/d14020132.
  • Das K, Ryu JJ, Hong SM, et al. Molecular phylogeny and morphology of Tolypocladium globosum sp. nov. isolated from soil in Korea. Mycobiology. 2023;51(2):79–86. doi: 10.1080/12298093.2023.2192614.
  • Urquhart AS, Idnurm A. Absidia healeyae: a new species of Absidia (Mucorales) isolated from Victoria, Australia. Mycoscience. 2021;62(5):331–335. doi: 10.47371/mycosci.2021.06.001.
  • Zhao H, Nie Y, Zong TK, et al. Species diversity and ecological habitat of Absidia (Cunninghamellaceae, Mucorales) with emphasis on five new species from forest and grassland soil in China. J Fungi. 2022;8:1–19.
  • Zhao H, Lv ML, Liu Z, et al. High-yield oleaginous fungi and high-value microbial lipid resources from Mucoromycota. Bioenergy Res. 2021;14:1196–1206.
  • White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, et al. PCR protocols: a guide to methods and applications. New York: Academic Press, Inc.; 1990. p. 315–322.
  • Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–118.
  • Rehner SA, Samuels GJ. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res. 1994;98:625–634.
  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–425.
  • Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16(2):111–120. doi: 10.1007/BF01731581.
  • Posada D, Crandall KA. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;89(3):134–145. doi: 10.1007/BF01734359.
  • Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool. 1971;20:406–416.
  • Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–1874. doi: 10.1093/molbev/msw054.
  • Wanasinghe DN, Phukhamsakda C, Hyde KD, et al. Fungal diversity notes 709–839: taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. Fungal Divers. 2018;89(1):1–236. doi: 10.1007/s13225-018-0395-7.
  • Heidary M, Habibi Z. Microbial transformation of androst-4-ene-3, 17-dione by three fungal species Absidia griseolla var. igachii, Circinella muscae and Trichoderma virens. J Mol Catal B Enzym. 2016;126:32–36.
  • Kristanti RA, Zubir MMFA, Hadibarata T. Biotransformation studies of cresol red by Absidia spinosa M15. J Environ Manag. 2016;172:107–111.
  • Albert Q, Leleyter L, Lemoine M, et al. Comparison of tolerance and biosorption of three trace metals (Cd, Cu, Pb) by the soil fungus Absidia cylindrospora. Chemosphere. 2018;196:386–392. doi: 10.1016/j.chemosphere.2017.12.156.
  • Cardoso KBB, Souza BKPA, Brandão-Costa RMP, et al. Waste coffee as an excellent substrate for collagenase production by filamentous fungi Cunninghamella phaeospora and Absidia cylindrospora. Act Sci Nutr Health. 2017;1:3–6.