760
Views
7
CrossRef citations to date
0
Altmetric
Articles; Pharmaceutical Biotechnology

Production of a new non-specific nuclease from Yersinia enterocolitica subsp. palearctica: optimization of induction conditions using response surface methodology

, , , &
Pages 559-566 | Received 26 Aug 2013, Accepted 27 Dec 2013, Published online: 26 Aug 2014

References

  • Beigi L, Karbalaei-Heidari HR, Kharrati-Kopaei M. Optimization of an extracelluar zinc-metalloprotease (SVP2) expression in Escherichia coli BL21 (DE3) using response surface methodology. Protein Expr Purif. 2012;84:161–166.
  • Jhamb K, Sahoo DK. Production of soluble recombinant proteins in Escherichia coli: effects of process conditions and chaperone co-expression on cell growth and production of xylanase. Bioresour Technol. 2012;123:135–143.
  • Kang W, Kim S, Lee S, Jeon E, Yun YR, Suh CK, Kim HW, Jiang JH. Characterization and optimization of vascular endothelial growth factor165 (rhVEGF165) expression in Escherichia coli. Protein Expr Purif. 2013;87:55–60.
  • Larentis AL, Argondizzo AP, Esteves Gdos S, Jessouron E, Galler R, Medeiros MA. Cloning and optimization of induction conditions for mature PsaA (pneumococcal surface adhesion A) expression in Escherichia coli and recombinant protein stability during long-term storage. Protein Expr Purif. 2011;78:38–47.
  • Song JM, An YJ, Kang MH, Lee YH, Cha SS. Cultivation at 6–10 °C is an effective strategy to overcome the insolubility of recombinant proteins in Escherichia coli. Protein Expr Purif. 2012;82:297–301.
  • Pan HF Xie ZP, Bao WN, Zhang JG. Optimization of culture conditions to enhance cis-epoxysuccinate hydrolase production on Escherichia coli by response surface methodology. Biochem Eng J. 2008;42:133–138.
  • Pinsach J, des Mas C, Lopez-Santin J. Induction strategies in fed-batch cultures for recombinant protein production in Escherichia coli: application to rhamnulose l-phosphate aldolase. Biochem Eng J. 2008;41:181–187.
  • Striedner G, Cserjan-Puschmann M, Postschacher F, Bayer K. Tuning the transcription rate of recombinant protein in strong Escherichia coli expression systems through repressor titration. Biotechnol Prog. 2003;19:1427–1432.
  • Mosratim R, Nancib N, Boudrant J. Variation and modeling of the probability of plasmid loss as a function of growth rate of plasmid-bearing cells of Escherichia coli during continuous cultures. Biotechnol Bioeng. 1993;41:395–404.
  • Wang YH, Jing CF, Yang B, Mainda G, Dong ML, Xu AL. Production of a new sea anemone neurotoxin by recombinant Escherichia coli: optimization of culture conditions using response surface methodology. Process Biochem. 2005;40:2721–2728.
  • Maria M, Mathias U, Stefan S. Upstream strategies to minimize proteolytic degradation upon recombinant production in Escherichia coli. Protein Expr Purif. 1996;7:129–136.
  • Wlad H, Ballagi A, Bouakaz L, Gu ZY, Janson J. Rapid two-step purification of a recombinant mouse rab fragment expressed in Escherichia coli. Protein Expr Purif. 2001;22:325–329.
  • Desai NA, Shankar V. Single-strand-specific nucleases. FEMS Microbiol Rev. 2003;26:457–491.
  • Li L, Lin S, Yang F. Function identification of the non-specific nuclease from white spot syndrome virus. Virology. 2005;337:399–406.
  • Maclellan SR, Forsberg CW. Properties of the major non-specific endonuclease from the strict anaerobe Fibrobacter succinogenes and evidence for disulfide bond formation in vivo. Microbiology. 2001;147:315–323.
  • Samejima K, Earnshaw WC. Trashing the genome: the role of nucleases during appotosis. Nat Rev Mol Cell Biol. 2005;6:677–688.
  • Accetto T, Avgustin G. Non-specific DNAases from the rumen bacterium Prevotta bryantii. Folia Microbiol. 2001;46:33–35.
  • Hsia KC, Li CL, Yuan HS. Structural and functional insight into sugar-nonspecific nucleases in host defense. Curr Opin Struct Biol. 2005;15:126–134.
  • Rangarajan ES, Shankar V. Sugar non-specific endonucleases. FEMS Microbiol Rev. 2001;25:583–613.
  • Drew HR, Travers AA. DNA structural variations in the E. coli tyrT promoter. Cell. 1984;37:491–502.
  • Meiss G, Friedhoff P, Hahn M, Gimadutdinow O, Pingoud A. Sequence preferences in cleavage of dsDNA and ssDNA by the extracellular Serratia marcescens endonuclease. Biochemistry. 1995;34:11979–11988.
  • Friedholf P, Franke I, Meiss G, Wende W, Krause KL, Pingoud A. Analysis of the mechanism of the Serratia nuclease using site-directed mutagenesis. Nucleic Acids Res. 1996;24:2632–2639.
  • Friedholf P, Gimadutdinow O, Pingoud A. Identification of catalytically relevant by alignment-guided mutagenesis. Nucleic Acids Res. 1994;22:3280–3287.
  • Miller MD, Krause KL. Identification of the Serratia endonuclease dimmer: structural basis and implications for catalysis. Protein Sci. 1996;5:24–33.
  • Shlyapnikov SV, Lunin VV, Blagova EV, Abaturov LV, Perbandt M, Betzel C, Mikhailov AM. A comparative structure-function analysis and molecular mechanism of action of endonucleases from Serratia marcescens and Physarum polycephalum. Bioorg Khim. 2002;28:23–31.
  • Ahuja SK, Ferreira GM, Moreira AR. Application of Plackett-Burman design and response surface methodology to achieve exponential growth for aggregated shipworm bacterium. Biotechnol Bioeng. 2004;85:666–675.
  • Bhaduri S, Wesley I. Isolation and characterization of Yersinia enterocolitica from swine feces recovered during the national animal health monitoring system swine 2000 study. J Food Prot. 2006;69:2107–2112.
  • Papaneophytou CP, Kontopidis GA. Optimization of TNF-α overexpression in Escherichia coli using response surface methodology: purification of the protein and oligomerization studies. Protein Expr Purif. 2012;86:35–44.
  • He WH, Gao YH, Yuan F, Bao YN, Liu FZ, Dong JQ. Optimization of supercritical carbon dioxide extraction of gardenia fruit oil and the analysis of functional components. J Am Oil Chem Soc. 2010;87:1071–1079.
  • Liyana-Pathirana C, Shahidi F. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem. 2005;93:47–56.
  • Gupta P, Sahai V, Bhatnagar R. Enhanced expression of the recombinant lethal factor of Bacillus anthracis by Fed-Batch culture. Biochem Biophys Res Commun. 2001;285:1025–1033.
  • Lo PK, Hassanb O, Ahmadc A, Mahadid NM, Illiasa RM. Excretory over-expression of Bacillus sp. G1 cyclodextrin glucanotransferase (CGTase) in Escherichia coli: optimization of the cultivation conditions by response surface methodology. Enzyme Microb Technol. 2007;40:1256–1263.
  • Tabandeh F, Khodabandeh M, Yakhchali B, Habib-Ghomi H, Shariati P. Response surface methodology for optimizing the induction conditions of recombinant interferon beta during high cell density culture. Chem Eng Sci. 2008;63:2477–2483.
  • Choi JH, Jeong KJ, Kim SC, Lee SY. Efficient secretory production of alkaline phosphatase by high cell density culture of recombinant Escherichia coli using the Bacillus sp. endoxylanase signal sequence. Appl Microbiol Biotechnol. 2000;53:640–645.
  • Fu Z, Hamid SB, Razak CN, Basri M, Salleh AB, Rahman RN. Secretory expression in Escherichia coli and single-step purification of a heat-stable alkaline protease. Protein Expr Purif. 2003;28:63–68.
  • Xu Z, Zhong Z, Huang L, Peng L, Wang F, Chen P. High-level production of bioactive human beta-defensin-4 in Escherichia coli by soluble fusion expression. Appl Microbiol Biotechnol. 2006;72:471–479.
  • Yuan H, Yang X, Hua ZC. Optimization of expression of an Annexin V-hirudin chimeric protein in Escherichia coli. Microbiol Res. 2004;159:147–156.