1,859
Views
5
CrossRef citations to date
0
Altmetric
Article; Food Biotechnology

Optimization of permeabilization process of yeast cells for catalase activity using response surface methodology

&
Pages 72-77 | Received 06 Sep 2013, Accepted 20 Jan 2014, Published online: 09 Jan 2015

References

  • Presecki AV, Vasic-Racki D. Production of L-malic acid by permeabilized cells of commercial Saccharomyces sp. strains. Biotechnol Lett. 2005;27:1835–1839.
  • Safarik I, Sabatkova Z, Safarikova M. Hydrogen peroxide removal with magnetically responsive Saccharomyces cerevisiae cells. J Agric Food Chem. 2008;56:7925–7928.
  • Kubal BS, D’Souza SF. Immobilization of catalase by entrapment of permeabilized yeast cells in hen egg white using glutaraldehyde. J Biochem Biophys Methods. 2004;59:61–64.
  • Sekhar S, Bhat N, Bhat SG. Preparation of detergent permeabilized bakers’ yeast whole cell catalase. Process Biochem. 1999;34:349–354.
  • Verduyn C, Giuseppin MLF, Scheffers WA, Dijken JP. Hydrogen peroxide metabolism in yeasts. Appl Environ Microbiol. 1988;54:2086–2090.
  • Abraham J, Bhat SG. Permeabilization of baker's yeast with N-lauroylsarcosine. J Ind Microbiol Biotechnol. 2008;35:799–804.
  • Seip JE, Cosimo R. Optimization of accessible catalase activity in polyacrylamide gel-immobilized Saccharomyces cerevisiae. Biotechnol Bioeng. 1992;40:638–642.
  • Venkateshwaran G, Somashekar D, Prakash MH, Agrawal R, Basappa SC, Joseph R. Production and utilization of catalase using Saccharomyces cerevisiae. Process Biochem. 1999;34:187–191.
  • Berlowska J, Kregiel D, Klimek L, Orzeszyna B, Ambroziak W. Novel yeast cell dehydrogenase activity assay in situ. Polish J Microbiol. 2006;55:127–131.
  • Kaur G, Panesar PM, Bera MB, Singh B. Optimization of permeabilization process for lactose hydrolysis in whey using response surface methodology. J Food Process Eng. 2009;32:355–368.
  • Kumari S, Panesar PS, Bera MB, Singh B. Permeabilization of yeast cells for β-galactosidase activity using mixture of organic solvents: a response surface methodology approach. Asian J Biotechnol. 2011;3:406–414.
  • Manocha B, Gaikar VG. Permeabilization of Aspergillus niger by reverse micellar solutions and simultaneous purification of catalase. Separation Sci Technol. 2006;41:3279–3296.
  • Panesar PS, Panesar R, Singh RS, Bera MB. Permeabilization of yeast cells with organic solvents for β-galactosidase activity. Res J Microbiol. 2007;2:34–41.
  • Panesar PS. Application of response surface methodology in the permeabilization of yeast cells for lactose hydrolysis. Biochem Eng J. 2008;39:91–96.
  • Zhao HW, Lv JP, Li SR. Production of conjugated linoleic acid by whole-cell Lactobacillus plantarum A6-1f. Biotechnol Biotechnol Equipment. 2011;25:2266–2272.
  • Bansal-Mutalik R, Gaikar VG. Reverse micellar solutions aided permeabilization of baker's yeast. Process Biochem. 2006;41:133–141.
  • Kaur G, Panesar PS, Bera MB, Kumar H. Hydrolysis of whey lactose using CTAB-permeabilized yeast cells. Bioprocess Biosyst Eng. 2009;32:63–67.
  • Presecki AV, Zelic B, Vasic-Racki D. Comparison of the l-malic acid production by isolated fumarase and fumarase in permeabilized baker's yeast cells. Enzym Microb Technol. 2007;41:605–612.
  • Qiang T, Qingxun S, Yewang Z, Dongzhi W. Characterization and application of D-amino acid oxidase and catalase within permeabilized Pichia pastoris cells in bioconversions. Appl Biochem Biotechnol. 2007;136:279–289.
  • Chow CK, Palecek SP. Enzyme encapsulation in permeabilized Saccharomyces cerevisiae cells. Biotechnol Prog. 2004;20:449–456.
  • Kondo A, Liu Y, Furutaa M, Fujitaa Y, Matsumotob T, Fukuda H. Preparation of high activity whole cell biocatalyst by permeabilization of recombinant flocculent yeast with alcohol. Enzym Microb Technol. 2000;27:806–811.
  • Mutalik SR, Vaidya KB, Joshi RM, Desai KM, Nene SN. Use of response surface optimization for the production of biosurfactant from Rhodococcus spp. MTCC 2574. Bioresour Technol. 2008;99:7875–7880.
  • Aragon CC, Ferreira-Dias S, Lucca Gattas EA, Freitas Sanches Peres M. Characterization of glycerol kinase from baker's yeast: response surface modeling of the enzymatic reaction. J Mol Catalysis B. 2008;52–53:113–120.
  • Gangadharan D, Sivaramakrishnan S, Nampoothiri KM, Sukumaran RK, Pandey A. Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens. Bioresour Technol. 2008;99:4597–4602.
  • Han J, Annuar MSM, Ariffin MFK, Gumel AM, Ibrahim S, Heidelberg T, Bakar B, Hossain ABMS, Sharifuddin Y. Lipase-catalyzed synthesis of 6-o-d-glucosyldecanoate in tert-butanol: reaction optimization and effect of mixing power input. Biotechnol Biotechnol Equipment. 2011;25:2642–2651.
  • Singh G, Ahuja N, Batish M, Capalash N, Sharma P. Biobleaching of wheat straw-rich soda pulp with alkalophilic laccase from c-proteobacterium JB: optimization of process parameters using response surface methodology. Bioresour Technol. 2008;99:7472–7479.
  • Delrio LA, Gomezortega M, Leallopez A, Lopezgorge J. More sensitive modification of catalase assay with Clark oxygen-electrode-application to kinetic study of pea leaf enzyme. Anal Biochem. 1977;80:409–415.
  • Chen XC, Bai JX, Cao JM, Li ZJ, Xiong J, Zhang L, Hong Y, Ying HJ. Medium optimization for the production of cyclic adenosine 3’,5’-monophosphate by Microbacterium sp. no. 205 using response surface methodology. Bioresour Technol. 2009;100:919–924.
  • Kim JK, Oh BR, Shin HJ, Eom CY, Kim SW. Statistical optimization of enzymatic saccharification and ethanol fermentation using food waste. Process Biochem. 2008;43:1308–1312.