1,443
Views
32
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

Hexavalent chromium reduction by chromate-resistant haloalkaliphilic Halomonas sp. M-Cr newly isolated from tannery effluent

, &
Pages 659-667 | Received 24 Nov 2013, Accepted 12 Feb 2014, Published online: 17 Oct 2014

References

  • Sarangi A, Krishnan C. Comparison of in vitro Cr(VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil. Bioresour Technol. 2008;99:4130–4137.
  • Xu L, Luo M, Jiang C, Wei X, Kong P, Liang X, Zhao J, Yang L, Liu H. In vitro reduction of hexavalent chromium by cytoplasmic fractions of Pannonibacter hragmitetus LSSE-09 under aerobic and anaerobic conditions. Appl Biochem Biotech. 2012;166:933–941.
  • Park CH, Keyhan M, Wielinga B, Fendrof S, Matin A. Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl Environ Microbiol. 2000;66:1788–1795.
  • Diaz MIR, Perez CD, Vargas E, Riveros-Rosas H, Campos Garcia J, Cervantes C. Mechanisms of bacterial resistance to chromium compounds. Biometals. 2008;21:321–332.
  • Ibrahim ASS, El-Tayeb AM, Elbadawi BY, Al-Salamah AA, Antranikian G. Hexavalent chromate reduction by alkaliphilic Amphibacillus sp. KSUCr3 is mediated by copper-dependent membrane-associated Cr(VI). Extremophiles. 2012;16:659–668.
  • Liu Z, Wu Y, Lei C, Liu P, Gao M. Chromate reduction by a chromate-resistant bacterium Microbacterium sp. World J Microbiol Biotechnol. 2012;28:1585–1592.
  • Soni SK, Singh R, Awasthi A, Singh M, Kalra A. In vitro Cr(VI) reduction by cell-free extracts of chromate-reducing bacteria isolated from tannery effluent irrigated soil. Environ Sci Pollut Res. 2013;20:1661–1674.
  • He M, Xiangyang L, Liu H, Miller SJ, Wang G, Rensing C. Characterization and genomic analysis of a chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1. J Hazard Mater. 2011;185:682–688.
  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. Bergey's manual of determinative bacteriology. 9th ed. Baltimore (MD): Williams and Wilkins; 1994.
  • Sambrook J, Fritsch EF, Maniatis T. Molecular cloning A: Laboratory manual. New York (NY): Cold Spring Harbor Laboratory; 1989.
  • Ausuble FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. Short protocols in molecular biology. New York (NY): Wiley; 1999.
  • American Public Health Association (APHA). Standard methods for the examination of water and waste water. 21st ed., Clesceri LS, Greenberg AE, Eaton AD, Franson MAH (Eds.), Washington D C, USA; 2005.
  • Mary MS, Vincent S, Janarthanan S, Rao TS, Tata BVR. Bioreduction of Cr(VI) by alkaliphilic Bacillus subtilis and interaction of the membrane groups. Saudi J Biol Sci. 2011;18:157–167.
  • Plackett RL, Burman JP. The design of optimum multifactorial experiments. Biometrica. 1946;33:305–325.
  • Ye Q, Roh Y, Carroll SL, Blair B, Zhou J, Zhang CL, Fields MW. Alkaline anaerobic respiration isolation and characterization of a novel alkaliphilic and metal-reducing bacteria. Appl Environ Microbiol. 2004;70:5595–5602.
  • Van Engelen MR, Peyton BM, Mormile MR, Pinkart HC. Fe(III), Cr(VI) and Fe(III) mediated Cr(VI) reduction in alkaline media using a Halomonas isolate from Soap Lake, Washington. Biodegradation. 2008;19:841–850.
  • Mormile MR, Romine MF, Garcia, MT, Ventosa A, Bailey TJ, Peyton BM. Halomonas campisalis sp.nov., a denitrifying, moderately haloalkaliphilic bacterium. Syst Appl Microbiol. 1999;22:551–558.
  • Boltyanskaya YV, Kevbrin VV, Lysenko AM, Kolganova TV, Tourova TP, Osipov GA, Zhilina TN. Halomonas mongoliensis sp. nov. and Halomonas kenyensis sp. nov., New haloalkaliphilic denitrifiers capable of N2O reduction, isolated from Soda Lakes. Microbiology. 2007;76:739–747.
  • Romano I, Giordano A, Lama L, Nicolaus B, Gambacorta A. Halomonas campaniensis sp.nov., haloalkaliphilic bacterium isolated from a mineral pool of Campania Region, Italy. Syst Appl Microbiol. 2005;28:610–618.
  • Nieto JJ, Fernandez-Castillo R, Marquez MC, Ventosa A, Quesada E, Ruiz Berraquero F. Survey of metal tolerance in moderately halophilic eubacteria. Appl Environ Microbiol. 1989;55:2385–2390.
  • Focardi S, Pepi M, Landi G, Gasperini S, Ruta M, Biasio PD, Focardi SE. Hexavalent chromium reduction by whole cells and cell free extract of the moderate halophilic bacterial strain Halomonas sp. TA-04. Int J Biodeterioration Biodegradation. 2012;66:63–70.
  • Zhang K, Li F. Isolation and characterization of a chromium-resistant bacterium Serratia sp. Cr-10 from a chromate-contaminated site. Appl Microbiol Biotechnol. 2011;90:1163–1169.
  • Cheng G, Li X. Bioreduction of chromium (VI) by Bacillus sp. isolated from soils of iron mineral area. Eur J Soil Biol. 2009;45:483–487.
  • Faisal M, Abdul H, Hasnain Sh. Chromium-resistant bacteria and cyanobacteria: impact on Cr(VI) reduction potential and plant growth. J Ind Microbiol Biotechnol. 2005;32:615–621.
  • Guha H, Jayachandran K, Maurrasse F. Kinetics of chromium(VI) reduction by a type strain Shewanella alga under different growth conditions. Environ Pollut. 2001;115:209–218.
  • Shapovalova AA, Khijniak TV, Tourova TP, Sorokin D Yu. Halomonas chromatireducens sp. nov., a new denitrifying facultatively haloalkaliphilic bacterium from solonchak soil capable of aerobic chromate reduction. Microbiology. 2009;78:102–111.
  • Rai D, Sass BM, Moore DA. Chromium (III) hydrolysis constants and solubility of chromium (III) hydroxide. Inorg Chem. 1987;26:345–349.
  • Pei QH, Shahir S, Raj ASS, Zakaria ZA, Ahmad WA. Chromium (VI) resistance and removal by Acinetobacter haemolyticus. World J Microbiol Biotechnol. 2009;25:1085–1093.
  • Daulton TL, Little BJ, Jones-Meehan J, Blom DA, Allard LF. Microbial reduction of chromium from the hexavalent to divalent state. Geochim Cosmochim Acta. 2007;71:556–565.
  • Zakaria ZA, Zakaria Z, Surif S, Ahmad WA. Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater. J Hazard Mater. 2007;146:30–38.
  • Mclean SJ, Beveridge TJ. Chromate reduction by a Pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol. 2001;67:1076–1084.
  • Pazouki M, Keyanpour-Rad M, Shafie Sh, Shahhoseini Sh. Efficiency of Penicillium chrysogenum PTCC5037 in reducing low concentration of chromium hexavalent in a chromium electroplating plant wastewater. Bioresour Technol. 2007;98:2116–2122.
  • Mabrouk MEM. Statistical optimization of medium components for chromate reduction by halophilic Streptomyces sp. MS-2. Afr J Microbiol Res. 2008;2:103–109.
  • Venil CK, Mohan V, Lakshmanaperumalsamy P, Yerima MB. Optimization of chromium removal by the indigenous bacterium Bacillus spp. REP02 using the response surface methodology. ISRN Microbiology. 2011; 2011:1–9.
  • Pulimi M, Subika J, Jastin S, Natarajan C, Amitava M. Enhancing the hexavalent chromium bioremediation potential of Acinetobacter junii VITSUKMW2 using statistical design experiments. J Microbiol Biotechnol. 2012;22:1767–1775.
  • Mabrouk MEM, ElAhwany AMD, Beliah MMB, Sabry SA. Xanthan production by a novel mutant strain of Xanthomonas campestris: Application of statistical design for optimization of process parameters. Life Sci J. 2013;10:1660–1667.
  • Silva B, Figueiredo H, Neves IC, Tavares T. The role of pH on Cr(VI) reduction and removal by Arthrobacter viscosus. Int J Chem Biol Eng. 2009;2:100–103.
  • Kathiravan MN, Karthick R, Muthu N, Muthukumar K, Velan M. Sonoassisted microbial reduction of chromium. Appl Biochem Biotechnol. 2010;160:2000–2013.
  • Nasseri S, Assadi MM, Sepehr NM, Rostami KH, Sharit M, Nadafi K. Chromium removal from tanning effluent using biomass of Aspergillus oryzae. Pakistan J Biol Sci. 2002;5:1056–1059.