572
Views
2
CrossRef citations to date
0
Altmetric
Article; Medical Biotechnology

Nitroxidergic modulation of behavioural, cardiovascular and immune responses, and brain NADPH diaphorase activity upon morphine tolerance/dependence in rats

, , , , , & show all
Pages 92-100 | Received 05 Nov 2014, Accepted 19 Nov 2014, Published online: 13 Dec 2014

References

  • Williams JT, MacDonald JC, Manzoni O. Cellular and synaptic adaptations mediating opioid dependence. Physiol Rev. 2001;81:299–343.
  • Manassi CR, Leite-Paniss CR, Menescalde-Oliveira L. Ventrolateral periaqueductal gray matter and the control of tonic immobility. Brain Res Bull. 1999;50:201–208.
  • Heinzen EL, Pollack GM. The development of morphine antinociceptive tolerance in nitric oxide synthase-deficient mice. Biochem Pharmacol. 2004;67:735–741.
  • Bhargava HN, Thorat SN. Evidence for a role of nitric oxide of the central nervous system in morphine abstinence syndrome. Pharmacology 1996;52:86–91.
  • Bhargava HN, Bian JT. N(G)-Nitro-L-Arginine reverses L-Arginine induced changes in morphine antinociception and distribution of morphine in brain regions and spinal cord of the mouse. Brain Res. 1997;749:351–353.
  • Bhargava HN, Bian JT. Effects of acute administration of L-Arginine on morphine antinocipeption and morphine distribution in central and peripheral tissue of mice. Pharmacol Biochem Behav. 1998;61:29–33.
  • Pataki I, Telegdy G. Further evidence that nitric oxide modifies acute and chronic morphine actions in mice. Eur J Pharmacol. 1998;357:157–162.
  • Dambisya YM, Lee T-L. Role of nitric oxide in the induction and expression of morphine tolerance and dependence on mice. Br J Pharmacol. 1996;117:914–918.
  • Babey A-M, Kolesnikov Y, Cheng J, Inturrisi CE, Trifilletti RR, Pasternak GW. Nitric oxide and opioid tolerance. Neuropharmacology. 1994;33:1463–1470.
  • Leza JC, Lisasoian I, Cuellar B, Moro MA, Lorenzo P. Correlation between brain nitric oxide synthase activity and opioid withdrawal. Nahunyn-Schmiedeberg's Arch Pharmacol. 1996; 353:349–354.
  • Herman BH, Vocci F, Bridge P. The effects of NMDA receptor antagonists and nitric oxide synthase inhibitors on opioid tolerance and withdrawal. Medication development issues for opiate addiction. Neuropsychopharmacology. 1995;13:269–293.
  • Ashina M, Lassen LH, Bendtsen L, Jensen RA, Olesen J. Inhibition of nitric oxide gas synthase and analgesic effect in chronic pain. Vgeskr Leager. 2000;162:171–173.
  • Guney HZ, Gorgun CZ, Tunctan B, Uludag O, Hodoglugil U, Abacioglu N, Zengil H. Circadian-rhythm-dependent effects of L-NG-Nitroarginine methyl ester (L-NAME) on morphine-induced analgesia. Chronobiol Int. 1998;15:283–289.
  • Kumar S, Bhargava HN. Time course of the changes of central nitric oxide synthase following chronic treatment with morphine in the mouse: reversal by naltrexone. Gen Pharmacol. 1997; 29:223–227.
  • Milichar JK, Daglish MRC, Nutt DJ. Addiction and withdrawal–current views. Curr Opin Pharmacol. 2001;1:84–90.
  • Bhargava HN, Kumar S, Barjavel MJ. Kinetic properties of nitric oxide synthase in cerebral cortex and cerebellum of morphine tolerant mice. Pharmacology. 1998;56:252–256.
  • Yaksh TL, Wallace MS. Opioids, analgesia, and pain management. In: Brunton LL, Chabner BA, Knollmann BC, editors. Goodman & Gilman's the pharmacological basis of therapeutics. New York (NY): The McGraw Hill Medical; 2011. p. 481–525.
  • Pugsley MK. The diverse molecular mechanisms responsible for the actions of opioids on the cardiovascular system. Pharmacol Ther. 2002;93:51–75.
  • Page GG, Ben-Eliyahu S. The immune-suppressive effect of pain. Semin Oncol Nurs. 1997;13:10–15.
  • Mellon RD, Bayer BM. Evidence for opioid central receptors in the immunomodulatory effects of morphine: Review of potential mechanisms of action. J Neuroimmunol. 1998;83:19–28.
  • Welters ID, Menzebach A, Goumon Y. Morphine inhibits NF-kappaB nuclear binding in human neutrophils and monocytes by a nitric oxide-dependent mechanism. Anesthesiology. 2000;92:1677–1684.
  • Kim MS, Cheong YP, So HS, Lee KM, Kim TY, Oh J, Chung YT, Son Y, Kim BR, Park R. Protective effects of morphine in peroxynitrite-induced apoptosis of primary rat neonatal astrocytes: potential involvement of G protein and phosphatidylinositol 3-kinase (PI3 kinase). Biochem Pharmacol. 2001;61:779–786.
  • Persson AI, Thorlin T, Bull C, Eriksson PS. Opioid-induced proliferation through the MAPK pathway in cultures of adult hippocampal progenitors. Mol Cell Neurosci. 2003;23:360–372.
  • Belcheva MM, Szucs M, Wang D, Sadee W, Coscia CJ. μ-Opioid receptor-mediated ERK activation involves calmodulin-dependent epidermal growth factor receptor transactivation. J Biol Chem. 2001;276:33847–33853.
  • Tegeder I, Geisslinger G. Opioids as modulators of cell death and survival–unraveling mechanisms and revealing new indications. Pharmacol Rev. 2004;56:351–369.
  • D`Amour FE, Smith DL. A method for determining loss of pain sensation. J Pharmacol Exp Ther. 1941;72:74–79.
  • Vlaskovska M, Nylander I, Schramm M, Hahne S, Kasakov L, Silberring J, Terenius L. Opiate modulation of dynorphine conversion in primary cultures of rat cerebral cortex. Brain Res. 1997;760:85–93.
  • Marinova TT. Epithelial framework reorganization during human thymus involution. Gerontology. 2005;51:14–18.
  • Marinova Z, Savov A, Kremenski I, Vlaskovska M. Molecular and cellular alterations in rat thymus after long term treatment with morphine and L-NAME. Balkan J Med Genet. 2000;3:41–44.
  • Scherer-Singler U, Vincent SR, Kimura H, McGeer EG. Demonstration of a unique population of neurons with NADPH-diaphorase histochemistry. J Neurosci Methods. 1983;9:229–234.
  • Santamarta MT, Ulibarri I, Pineda J. Inhibition of neuronal nitric oxide synthesis attenuates the development of morphine tolerance in rats. Synapse 2005;57:38–46.
  • Ozdemir E, Bagcivan I, Durmus N, Altun A, Gursoy S. The nitric oxide-cGMP signaling pathway plays a role in tolerance to the analgesic effect of morphine. Can J Physiol Pharmacol. 2011;89:89–95.
  • Adams ML, Kalicki JM, Meyer ER, Cicero TJ. Inhibition of morphine withdrawal syndrome by a nitric oxide synthase inhibitor, NG-nitro-L-arginine methyl ester. Life Sci. 1993;52:PL245–PL249.
  • Pepe S, Van den Brink OW, Lakatta EG, Xiao RP. Cross-talk of opioid peptide receptor and beta-adrenergic receptor signalling in the heart. Cardiovasc Res. 2004;63:414–422.
  • Headrick JP, Pepe S, Peart JN. Non-analgesic effects of opioids: cardiovascular effects of opioids and their receptor systems. Curr Pharm Des. 2012;18:6090–6100.
  • Lysle DT, Coussons ME, Watts VJ, Bennett EN, Dykstra LA. Morphine-induced alterations of immune status: dose dependency, compartment specificity and antagonism by naltrexone. J Pharmacol. 1993;265:1071–1078.
  • Liu L-W, Lu J, Wang XH, Fu S-K, Li Q, Lin F-Q. Neuronal apoptosis in morphine addiction and its molecular mechanism. Int J Clin Exp Med. 2013;6:540–545.
  • Wang J, Charboneau R, Balasubramanian S, Barke RA, Loh HH, Roy S. Morphine modulates lymph node-derived T lymphocyte function: role of caspase-3, -8, and nitric oxide. J Leukoc Biol. 2001;70:527–536.
  • Welters ID, Menzebach A, Goumon Y, Cadet P, Menges T, Hughes TK, Hempelmann G, Stefano GB. Morphine inhibits NF-kappaB nuclear binding in human neutrophils by a nitric oxide-dependent mechanism. Anesthesiology. 2000;92:1677–1684.
  • Liu W, Wang C-H, Cui Y, Mo L-Q, Zhi J-L, Sun S-N, Wang Y-L, Yu H-M, Zhao C-M, Feng J-Q, Chen P-X. Inhibition of neuronal nitric oxide synthase antagonizes morphine antinociceptive tolerance by decreasing activation of p38 MAPK in the spinal microglia. Neurosci Lett. 2006;410:174–177.