3,401
Views
56
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

Degradation kinetics and pathway of phenol by Pseudomonas and Bacillus species

&
Pages 45-53 | Received 10 May 2014, Accepted 05 Oct 2014, Published online: 07 Jan 2015

References

  • ATSDR. Agency for toxic substances and disease registry. Medical management guidelines for phenol. 2003. Available from: http://www.atsdr.cdc.gov/MHM1/mmg115.html.
  • Bandhyopadhyay K, Das D, Bhattacharyya P. Maiti BR. Reaction engineering studies on biodegradation of phenol by Pseudomonas putida MTCC 1194 immobilized on calcium alginate. Biochem Eng J. 2001;8:179–186.
  • Bandyopadhyay K, Das D, Maiti BR. Kinetics of phenol degradation using Pseudomonas putida MTCC 1194. Bioprocess Eng. 1998;18:373–377.
  • Mollaei M, Abdollahpoura S, Atashgahi S, Abbasi H, Masoomi F, Rada I, Lotfi AS, Zahiri HS, Vali H, Noghabi KA. Enhanced phenol degradation by Pseudomonas sp. Sa01: gaining insight into the novel single and hybrid immobilizations. J Hazard Mater. 2010;175:284–292.
  • Kasikara-Pazarlioglu N, Telefoncu A. Biodegradation of phenol by Pseudomonas putida immobilized on activated pumice particles. Process Biochemistry. 2005;40:1807–1814.
  • Han Y, Quan X, Chen S, Zhao H, Cui C, Zhao Y. Electrochemically enhanced adsorption of phenol on activated carbon fibers in basic aqueous solution. J Colloid Interface Sci. 2006;299:766–771.
  • Puerto-Tello A, Moreno-piraján JC, Guzmán AM, Escudero ME, Velázquez L, Giraldo L, Sapag K. Decomposition of phenol by Pseudomonas aeruginosa immobilized on activated carbons. J Environ Eng Manag. 2009;19:73–78.
  • Nakhla GF, Suidan MT, Pfeffer JT. Control of anaerobic GAC reactors treating inhibitory waste eaters. J Water Pollut Control Fed. 1990;62:65–72.
  • Patterson JW. Wastewater treatment technology. Ann Arbor, MI: Ann Arbor Science Publishers; 1975.
  • Bond RG, Straub CP. Handbook of Environmental Control. Vol. IV, Wastewater: treatment and disposal. Cleveland, OH: CRC Press; 1974. p. 905.
  • Wang YT. Effect of chemical oxidation on anaerobic biodegradation of model phenolic compounds. Water Environ Res. 1992;64:268–273.
  • Hamed TA, Bayraktar E, Mehmetoğlu U, Mehmetoğlu T. The biodegradation of benzene, toluene and phenol in a two-phase system. Biochem Eng J. 2004;19:137–146.
  • Gibson DT, Subramanian V. Microbial degradation of aromatic hydrocarbons. In: Gibson DT, editor. Microbial degradation of organic compounds. New York, NY: Dekker Inc.; 1984. p. 181–252.
  • Wang SJ, Loh KC. Modeling the role of metabolic intermediates in kinetics of phenol biodegradation. Enzym Microb Technol. 1999;25:177–184.
  • Kumar A, Kumar S, Kumar S. Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194. Biochem Eng J. 2004;22:151–159.
  • Fava F, Armenante PM, Kafkewitz D, Marchetti L. Influence of organic and inorganic growth supplements on the aerobic biodegradation of chlorobenzoic acid. Appl Microbiol Biotechnol. 1995;43:171–177.
  • Bettman H, Rehm HJ. Degradation of phenol by polymer entrapped microorganisms. Appl Microbiol Biotechnol. 1984;20:285–290.
  • Feist C, Hegeman GD. Phenol and benzoate metabolism by Pseudomonas putida: regulation of tangential pathways. J Bacteriol. 1969;100:869–877.
  • Hill GA, Robinson CW. Substrate inhibition kinetics: phenol degradation by Pseudomonas putida. Biotechnol Bioeng. 1975;17:599–615.
  • Hinteregger C, Leitner R, Loidl M, Ferschl A, Streichsbier F. Degradation of phenol and phenolic compounds by Pseudomonas putida EKII. Appl Microbiol Biotechnol. 1992;37:252–259.
  • Sokol W. Dynamics of continuous stirred-tank biochemical reactor utilizing inhibitory substrate. Biotechnol Bioeng. 1988;31:198–202.
  • Yang RD, Humphery AE. Dynamic and steady sate studies of phenol biodegradation in pure and mixed cultures. Biotechnol Bioeng. 1975;17:1211–1235.
  • Paller G, Hommel RK, Kleber HP. Phenol degradation by Acinetobacter calcoaceticus NCIB 8250. J Basic Microbiol. 1995;35:325–335.
  • Hughes EJ, Bayly RC, Skurray RA. Evidence for isofunctional enzymes in the degradation of phenol, m- and p-toluate, and p-cresol via catechol meta-cleavage pathways in Alcaligenes eutrophus. J Bacteriol 1984;158:79–83.
  • Leonard D, Lindley ND. Carbon and energy flux constraints in continuous cultures of Alcaligenes eutrophus grown on phenol. Microbiology. 1998;144:241–248.
  • Buswell JA. Metabolism of phenol and cresols by Bacillus stearothermophilus. J Bacteriol. 1975;124:1077–1083.
  • Schroeder M, Muller C, Posten C, Deckwer W-D, Hecht V. Inhibition kinetics of phenol degradation from unstable steady state data. Biotechnol Bioeng. 1997;54:567–576.
  • Solomon BO, Posten C, Harder MPF, Hecht V, Deckwer W-D. Energetics of Pseudomonas cepacia growth in a chemostat with phenol limitation. J Chem Technol Biotechnol. 1994;60:275–282.
  • Rizzuti L, Augugliaro V, Torregrossa V, Savarino A. Kinetics of phenol removal by Nocardia species. Eur J Appl Microbiol Biotechnol. 1979;8:113–118.
  • Cho Y, Rhee S, Lee S. Influence of phenol on biodegradation of p-nitrophenol by freely suspended and immobilized Nocardioides sp. NSP.41. Biodegradation. 2000;11:21–28.
  • Leonard D, Lindly NA. Growth of Ralstonia eutropha on inhibitory concentration of phenol: diminished growth can be attributed to hydrophilic perturbation of phenol hydroxylase activity. Enzym Microb Technol. 1999;25:271–277.
  • Hensel J. Straube G. Kinetic studies of phenol degradation by Rhodococcus sp. P1.II. Continuous cultivation. Antonievan Leeuwenhoek. 1990;57:33–36.
  • Hashmi I. Microbial transformations of hazardous waste during biological waste treatment [ dissertation]. Karachi: University of Karachi; 2000. Available from: (www.eprints.hec.gov.pk).
  • Jilani, S. Biodegradation of hazardous waste during biological treatment process [dissertation]. Karachi: University of Karachi; 2004. Available from: (www.eprints.hec.gov.pk).
  • Sivaraj R, Dorthy CAM, Veneckatesh R. Isolation, characterization, and growth kinetics of bacteria metabolizing textile effluent. J Biosci Technol. 2011;2:324–330.
  • John GH, Sneath PH, Krieg NR, Holt JG, Holt JG. Bergey's manual of determinative bacteriology. 9th ed. New York, NY: Lippincott Williams and Wilkins; 2000.
  • Monod J. The growth of bacterial cultures. Annu Rev Microbiol. 1979;3:371–394.
  • Haldane JSB. 1930. Enzymes, longmans, green, UK. Cambridge, MA: MIT Press; 1965.
  • Andrew JF. A mathematical model for continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol Bioeng. 1968;10:707–723.
  • Luong JHT. Generalization of Monod kinetics for analysis of growth data with substrate inhibition. Biotechnol Bioeng. 1987;29:242–248.
  • Levenspiel O. The Monod equation: a revisit and a generalization to product inhibition situations. Biotechnol Bioeng. 1980;22:1671–1687.
  • APHA (American Public Health Association). Standard methods for the examination of water and wastewater. 18th ed. Washington, DC: American Public Health Association; 1992.
  • Sikkema J, de Bont FA, Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev. 1995;59:201–222.
  • Weber FJ, de Bont JA. Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochimica et Biophysica Acta. 1996;1286:225–245.
  • Cabiscol E, Tamarit J, Ros J. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol. 2000;3:3–8.
  • Feder ME, Hofmann GE. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol. 1999;61:243–282.
  • Scott MD, Meshnick SR, Eaton JW. Superoxide dismutase-rich bacteria. Paradoxical increase in oxidant toxicity. J Biol Chem. 1987;262:3640–3645.
  • Kotturi G, Robinson CW, Inniss WE. Phenol degradation by a psychrotrophic strain of Pseudomonas putida. Appl Microb Biotechnol. 1991;34:539–543.
  • Nikakhtari H, Hill GA. Continuous bioremediation of phenol-polluted air in an external loop airlift bioreactor with a packed bed. J Chem Technol Biotechnol. 2006;81:1029–1038.
  • Molin G, Nilsson I. Degradation of phenol by Pseudomonas putida ATCC 11172 in continuous culture at different ratios of biofilm surface to culture volume. Appl Environ Microbiol. 1985;50:946–950.
  • Ahmed AM, Nakhla FG, Farooq S. Phenol degradation by Pseudomonas aeruginosa. J Environ Sci Health A: Environ Sci Eng Toxicol. 1994;30:99–107.
  • Allsop PJ, Chisti Y, Moo-Young M, Sullivan GR. Dynamics of phenol degradation by Pseudomonas putida. Biotechnol Bioeng. 1993;41:572–580.
  • Sá CSA, Boaventura RAR. Biodegradation of phenol by Pseudomonas putida. Biochem Eng J. 2001;9:211–219.
  • Agarry SE, Solomon BO. Kinetics of batch microbial degradation of phenols by indigenous Pseudomonas fluorescence. Int J Environ Sci Technol. 2008;5:223–232.
  • Fujita M, Ike M, Kamiya T. Accelerated phenol removal by amplifying the gene expression with a recombinant plasmid encoding catechol 2,3-oxygenase. Water Res. 1993;27:9–13.
  • Tuah PM, Rashid NAA, Salleh MM. Degradation pathway of phenol through ortho-cleavage by Candida tropicalis RETL-Cr1. Borneo Sci. 2009;24:1–8.