36,120
Views
945
CrossRef citations to date
0
Altmetric
Review Articles; Agriculture and Environmental Biotechnology

An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes

, , , &
Pages 205-220 | Received 27 Aug 2014, Accepted 07 Oct 2014, Published online: 17 Feb 2015

References

  • Cooper GM. The chemistry of cells: the central role of enzymes as biological catalysts. In: Cooper GM, editor. The cell: a molecular approach. 2nd ed. Sunderland (MA): Sinauer Associates; 2000. p. 145–146.
  • Guisan JM. Immobilization of enzymes as the 21st century begins. In: Guisan JM, editor. Immobilization of enzymes and cells. 2nd ed. New Jersey (NJ): Humana Press Inc.; 2006. p. 1–13.
  • Hernandez K, Fernandez-Lafuente R. Control of protein immobilization: coupling immobilization and side-directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme Microb Technol. 2011;48:107–122.
  • Krajewska B. Chitin and its derivative as supports for immobilization of enzymes. Enzyme Microb Technol. 2004;35:26–39.
  • Sheldon RA. Cross-linked enzyme aggregates (CLEAs): stable and recyclable biocatalysts. Biochem Soc. 2007;35(6):1583–1587.
  • Demetrius L. Thermodynamics and kinetics of protein folding an evolutionary perspective. J Theor Biol. 2002;217:397–411.
  • Wahab RA, Basri M, Abdul Rahman MB, Raja Abdul Rahman RNZ, Salleh AB, Leow TC. Manipulation of the conformation and enzymatic properties of T1 lipase by site-directed mutagenesis of the protein core. Appl Biochem Biotechnol. 2012;167:612–620.
  • Wahab RA, Basri M, Abdul Rahman MB, Raja Abdul Rahman RNZ, Salleh AB, Leow TC. Engineering catalytic efficiency of thermophilic lipase from Geobacillus zalihae by hydrophobic residue mutation near the catalytic pocket. Adv Biosci Biotechnol. 2012;3:158–167.
  • Tosa T, Mori T, Fuse N, Chibata I. Studies on continuous enzyme reactions. I. Screening of carriers for preparation of water-insoluble aminoacylase. Enzymologia. 1966;31:214–224.
  • Asuri P, Karajanagi SS, Sellitto E, Kim DY, Kane RS, Dordick JS. Water-soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations. Biotechnol Bioeng. 2006;95(5):804–811.
  • Saifuddin N, Raziah AZ, Junizah AR. Carbon nanotubes: a review on structure and their interaction with proteins. J Chem. 2013; 2013:676815.
  • Peng YE, Xu ZI, Kang WJ, Deng HT, Seta P. Covalent immobilization of lipase on poly(acrylonitrile-co-maleic acid) ultrafiltration hollow fiber membrane. Chem Rev Chin Univ. 2005;21(6):723–727.
  • Tian X, Anming W, Lifeng H, Haifeng L, Zhenming C, Qiuyan W, Xiaopu Y. Recent advance in the support and technology used in enzyme immobilization. Afr J Biotechnol. 2009;8(19):4724–4733.
  • Aehle W. Enzymes in industry. 3rd ed. Weinheim: Wiley-VCH; 2007.
  • Cabral JMS, Kennedy JF. Immobilisation techniques for altering thermal stability of enzymes. In: Gupta MN, editor. Thermostability of enzymes. Berlin: Springer Verlag; 1993. p. 163–179.
  • Liese A, Hilterhause L. Evaluation of immobilized enzymes for industrial applications. Chem Soc Rev. 2013;42:6236–6249.
  • Brena BM, Batista-Viera F. Immobilization of enzymes. In: Guisan JM, editor. Immobilization of enzymes and cells. 2nd ed. New Jersey (NJ): Humana Press Inc.; 2006. p. 123–124.
  • Goel MK. 1994. Immobilized enzymes. [Internet]. [cited 2014 Apr]. Available from: http://www.rpi.edu/dept/chem-eng/Biotech-Environ/goel.html.
  • Tischer W, Wedenkind F. Immobilized enzymes: methods and application. In: Fessner WD, editor. Topics in chemistry. Berlin: Springer Verlag; 1999. p. 100–108.
  • Norouzian D. Enzyme immobilization: the state of art in biotechnology. Iran J Biotechnol. 2003;1(4):197–206.
  • Brodelius P, Mosbach K. Immobilization techniques for cells/organelles. In: Mosbach K, editor. Methods in enzymology. London: Academic Press; 1987. p. 173–454.
  • Buchholz K, Klein J. Characterization of immobilized biocatalysts. In: Mosbach K, editor. Methods in enzymology. London: Academic Press; 1987; p. 3–30.
  • Li S, Hu J, Liu B. Use of chemically modified PMMA microspheres for enzyme immobilization. Biosystems. 2004;77:25–32.
  • Foresti ML, Ferreira ML. Chitosan-immobilized lipases for the catalysis of fatty acid esterifications. Enzyme Microb Technol. 2007;40:769–777.
  • Balcão VM, Paiva AL, Malcata FX. Bioreactors with immobilized lipases: state-of-the-art. Enzyme Microb Technol. 1996;18:392–416.
  • de Lathouder KM, van Benthem DTJ, Wallin SA, Mateo C, Fernandez LF, Guisan JM, Kapteijn F, Moulijn JA. Poliethyleneimine (PEI) functionalized ceramic monolithsas enzyme carriers: preparation and performance. J Mol Catal B. 2008;50:20–27.
  • Spahn C, Minteer SD. Enzyme immobilization in biotechnology. Recent Pat Eng. 2008;2:195–200.
  • Khan AA, Alzohairy MA. Recent advances and applications of immobilized enzymes technologies: a review. Res J Biol Sci. 2010;5(8):565–575.
  • Boller T, Meier C, Menzler S. Eupergit oxirane acrylic beads: how to make enzymes fit for biocatalysis. Org Process Res Dev. 2002;6(4):509–519.
  • Cao L, Langen L, Sheldon RA. Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol. 2003;14:387–394.
  • Pairat I, Thidarat C, Jitchon P, Navadon S, Jittima C. Application of agriculture waste as support for lipase immobilization. Biocatal Agric Biotechnol. 2014;3(3):77–82.
  • Wu C, Zhou G, Jiang X, Ma J, Zhang H, Song H. Active biocatalysts based on Candida rugosa lipase immobilized in vesicular silica. Process Biochem. 2012;47:953–959.
  • Kim JB, Grate JW, Wang P. Nanostructures for enzyme stabilization. Chem Eng Sci. 2006;61:1017–1026.
  • Khan AA, Akhtar S, Hussain Q. Direct immobilization of polyphenol oxidases on celite 545 from ammonium sulphate fractionated proteins of potato (Solanum tuberosum). J Mol Catal B. 2006;40:58–63.
  • Ansari SA, Husain Q. Lactose hydrolysis from milk/whey in batch and continuous processes by concanavalin A-celite 545 immobilized Aspergillus oryzae β-galactosidase. Food Bioprod Process. 2012;90(2):351–359.
  • Datta S, Rene CL, Rajaram YRS. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech. 2013;3(1):1–9.
  • Gemenier P. Materials for enzyme engineering. In: Gemeiner P, editor. Enzyme engineering. 1st ed. New York (NY): Ellis Horwood; 1992. p. 13–119.
  • Gorecka E, Jastrzebska M. Immobilization techniques and biopolymer carriers. Biotechnol Food Sci. 2011;75:65–86.
  • Lee CH, Lin TS, Mou CY. Mesoporous materials for encapsulating enzymes. Nano. 2009;4:165–179.
  • Wang A, Wang H, Zhu S, Zhou C, Du Z, Shen S. An efficient immobilizing technique of penicillin acylase with combining mesocellular silicafoams support and p-benzoquinone cross linker. Bioprocess Biosyst Eng. 2008;31(5):509–517.
  • Guowei Z, Cuicui W, Xiaojie J, Jingyun M, Huayong Z, Hongbin S. Active biocatalysts based on Candida rugosa lipase immobilized in vesicular silica. Process Biochem. 2012;47:953–959.
  • Kim J, Jia H, Wang P. Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol Adv. 2006;24:296–308.
  • Wang L, Wei L, Chen Y, Jiang R. Specific and reversible immobilization of NADH oxidase on functionalized carbon nanotubes. J Biotechnol. 2010;150(1):57–63.
  • Verma ML, Naebe M, Barrow CJ, Puri M. Enzyme immobilisation on amino-functionalised multi-walled carbon nanotubes: structural and biocatalytic characterisation. PLOS One. 2013;8:1–9.
  • Peijun J, Huishan T, Xin X, Wei F. Lipase covalently attached to multiwalled carbon nanotubes as an efficient catalyst in organic solvent. AIChE J. 2010;56:3005–3011.
  • Ansari SA, Husain Q. Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv. 2012;30(3):512–523.
  • Chiou SH, Wu WT. Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials. 2004;25:197–204.
  • Costa SA, Azevedo HS, Reis RL. Enzyme immobilization in biodegradable polymers for biomedical applications. In: Reis RL, Román JS, editors. Biodegradable systems in tissue engineering and regenerative medicine. London: CRC Press LLC; 2005. p. 109–112.
  • Flickinger MC, Drew SW. Fermentation, biocatalysis and bioseparation. In: Flickinger MC, editor. Encyclopedia of bioprocess technology. Vol. 1. 1st ed. New York (NY): Wiley; 1999.
  • Jegannathan KR, Abang S, Poncelet D, Chan ES, Ravindra P. Production of biodiesel using immobilized lipase – a critical review. Crit Rev Biotechnol. 2008;28:253–264.
  • Kumar N. Studies of glucose oxidase immobilized carbon nanotube-polyaniline composites [MSc thesis]. Patiala (India): Thapar University; July 2009.
  • Gupta M, Mattiason B. Determination of coupling yields and handling of labile proteins in immobilization technology. In: Taylor RF, editors. Protein immobilization. Fundamentals and applications. New York (NY): Marcel Dekker; 1992. p. 161–179.
  • End N, Schöning KE. Immobilisation of biocatalyst in industrial research and production. Top Curr Chem. 2004;242:273–317.
  • Joshi KA, Tang J, Haddon R, Wang J, Chen W, Mulchandani A. A disposable biosensor for organophosphorus nerve agents based on carbon nanotubes modified thick film strip electrode. Electroanalysis. 2005;17(1):54–58.
  • Joshi KA, Prouza M, Kum M. V-type nerve agent detection using a carbon nanotube amperometric enzyme electrode. Anal Chem. 2006;78:331–336.
  • Cao L. Carrier-bound immobilized enzymes: principles, application and design. Weinheim: Wiley-VCH; 2005.
  • Hanefield U, Gardossi L, Magner E. Understanding enzyme immobilisation. Chem Soc Rev. 2008;38:453–468.
  • Bahulekar R, Ayyangar NR, Ponrathnam S. Polyethyleneimine in immobilization of biocatalysts. Enzyme Microb Technol. 1991;13:858–868.
  • Nelson DL, Cox MM. Principles of biochemistry. 4th ed. New York (NY): W. H. Freeman and Co.; 2005.
  • Roy I, Gupta MN. Bioaffinity immobilization. In: Guisan JM, editor. Immobilization of enzymes and cells. 2nd ed. New Jersey (NY): Humana Press Inc.; 2006. p. 189–192.
  • Sardar M, Roy I, Gupta MN. Simultaneous purification and immobilization of Aspergillus niger xylanase on the reversibly soluble polymer Eudragit(TM) L-100. Enzyme Microb Technol. 2000;27:672–679.
  • Haider T, Husain Q. Concanavalin A layered calcium alginate-starch beads immobilized β-galactosidase as therapeutic agent for lactose intolerant patients. Int J Pharm. 2008;359:1–6.
  • Porath J. Salting out adsorption techniques for protein purifications. Biopolymers. 1987;26:S193–S204.
  • Huang L, Cheng ZM. Immobilization of lipase on chemically modified bimodal ceramic foams for olive oil hydrolysis. Chem Eng J. 2008;144:103–109.
  • Chronopoulou L, Kamel G, Sparago C, Bordi F, Lupi S. Structure-activity relationships of Candida rugosa lipase immobilised on polylactic acid nanoparticles. Soft Matter. 2011;7:2653–2662.
  • Bucur B, Danet AF, Marty JL. Versatile method of cholinesterase immobilisation via affinity bonds using concanavalin A applied to the construction of a screen-printed biosensor. Biosens Bioelectron. 2004;20:217–225.
  • Pryakhin AN, Chukhrai ES, Poltorak OM. Glucose 6-phosphate dehydrogenase immobilized by adsorption on silica gel solid supports. Vest Moskov Univ Ser 2 Khim. 1977;18(1):125.
  • Kumakura M, Kaetsu I. Immobilization of cellulase using porous polymer matrix. J Appl Polym Sci. 2003;29(9):2713–2718.
  • Subramanian A, Kennel SJ, Oden PI, Jacobson KB, Woodward J, Doktycz MJ. Comparison of techniques for enzyme immobilisation on silicon supports – effect of cross-linker chain length on enzyme activity. Enzyme Microb Technol. 1999;24(1):26–34.
  • Chiang C-J, Hsiau L-T, Lee W-C. Immobilization of cell-associated enzymes by entrapment in polymethacrylamide beads. Biotechnol Technol. 2004;11(2):121–125.
  • Klotzbach TL, Watt MM, Ansari Y, Minteer SD. Improving the microenvironment for enzyme immobilization at electrodes by hydrophobically modifying chitosan and Nafion polymers. J Memb Sci. 2008;311:81–88.
  • Won K, Kim S, Kim KJ, Park HW, Moon SJ. Optimization of lipase entrapment in Ca-alginate gel beads. Process Biochem. 2005;40:2149–2154.
  • Shen Q, Yang R, Hua X, Ye F, Zhang W, Zhao W. Gelatin-templated biomimetic calcification for β-galactosidase immobilization. Process Biochem. 2011;46:1565–1571.
  • Keeling-Tucker T, Brennan JD. Fluorescent probes as reporters on the local structure and dynamics in sol-gel derived nanocomposite materials. Chem Mater. 2001;13:3331–3350.
  • Gill I. Bio-doped nanocomposite polymers: sol-gel bioencapsulates. Chem Mater. 2001;13:3404–3421.
  • Jin W, Brennan JD. Properties and applications of proteins encapsulated within sol-gel derived materials. Anal Chim Acta. 2002;461:1–36.
  • Tsai HC, Doong R. Preparation and characterization of urease-encapsulated biosensors in poly(vinyl alcohol)-modified silica sol-gel materials. Biosens Bioelectron. 2007;23:66–73.
  • Gao S, Wang Y, Diao X, Luo G, Dai Y. Effect of pore diameter and cross-linking method on the immobilization efficiency of Candida rugosa lipase in SBA-15. Bioresour Technol. 2010;101:3830–3837.
  • Lopez A, Lazaro N, Marques AM. The interphase technique: a simple method of cell immobilization in gel-beads. J Microbiol Methods. 1997;30:231–234.
  • Shi Y, Jin F, Wu Y, Yan F, Yu X, Quan Y. Improvement of immobilized cells through permealilizing and crosslinking. Chin J Biotechnol. 1997;13(1):111–113.
  • Honda T, Miyazaki M, Nakamura H, Maeda H. Immobilization of enzymes on microchannel surface through cross-linking polymerization. AIChE Spring National Meeting; 2006 Apr 23–27; Orlando, FL.
  • Sheldon RA. Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Appl Microbiol Biotechnol. 2011;92:467–477.
  • Migneault I, Dartiquenave C, Bertrand MJ, Waldron KC. Glutaraldehyde: behaviour in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques. 2004;37(5):790–802.
  • Obzturk B. Immobilization of lipase from Candida rugosa on hydrophobic and hydrophilic supports [MSc dissertation]. İzmir (Turkey): Izmir Institute of Technology; 2001. p. 40.
  • Wu L, Yuan X, Sheng J. Immobilization of cellulase in nanofibrous PVA membranes by electrospinning. J Memb Sci. 2005;250:167–173.
  • Sakai S, Liu Y, Yamaguchi T, Watanabe R, Kawabe M, Kawakami K. Immobilization of Pseudomonas cepacia lipase onto electrospun polyacrylonitrile fibers through physical adsorption and application to transesterification in nonaqueous solvent. Biotechnol Lett. 2010;32:1059–1062.
  • Ren G, Xu X, Liu Q. Electrospun poly(vinyl alcohol)/ glucose oxidasebiocomposite membranes for biosensor applications. React Funct Polym. 2006;66:1559–1564.
  • Park JM, Kim M, Park HS, Min J, Kim YH. Immobilization of lysozyme-CLEA onto eletrospun chitosan nanofiber for effective antimicrobial applications. Int J Biol Macromol. 2013;54:37–43.
  • Singh BD. Biotechnology expanding horizonsa-amylase immobilization on the silica nanoparticles for cleaning performance towards starch soils in laundry detergents. J Mol Catal B. 2009;74:1–5.
  • Dandavate V, Keharia H, Madamwar D. Ethyl isovelarate synthesis using Candida rugosa lipase immobilized on silica nanoparticles prepared in nonionic reverses micelles. Process Biochem. 2009;44:349–352.
  • Yilmaz E, Can K, Sezgin M, Yilmaz M. Immobilization of Candida rugosa lipase on glass bead for enantioselective hydrolysis of racemic naproxen methyl ester. Bioresour Technol. 2011;102:499–506.
  • Damnjanovíc J. Covalently immobilized lipase catalyzing high-yielding optimized geranyl butyrate synthesis in a batch and fluidized bed reactor. J Mol Catal B. 2012;75:50–59.
  • Ovsejevi K, Manta C, Battista-Viera F. Reversible covalent immobilization of enzymes via disulphide bonds. Methods Mol Biol. 2013;1051:89–116.
  • Ispas C, Sokolov I, Andreescu S. Enzyme-functionalized mesoporous silica for bioanalytical applications. Anal Bioanal Chem. 2009;393:543–554.
  • Bing Z, Rui Z, Yazhen W, Congcong L, Jingtao W, Jindun L. Chitosan–halloysite hybrid nanotubes: horseradish peroxidase immobilization and applications in phenol removal. Chem Eng J. 2013;214:304–309.
  • Losic D, Short K, Gooding JJ, Shapter JG. Scanning probe microscopy characterisation of immobilised enzyme molecules on a biosensor surface: visualisation of individual molecules. J Serbian Chem Soc. 2004;69:93–106.
  • MacKenzie RC. Nomenclature of thermal analysis: part IV. Thermochim Acta. 1979;28:1–6.
  • Crompton TR. Polymer reference book. Shrewsbury: Rapra Publishing; 2006.
  • Rajan A, Sudha JD, Abraham TE. Enzymatic modification of cassava starch by fungal lipase. Ind Crops Prod. 2008;27:50–59.
  • Kumar V, Yadav S, Jahan F, Saxena RK. Organic synthesis of maize starch-based polymer using Rhizopus oryzae lipase, scale up, and its characterization. Prep Biochem Biotechnol. 2014;44:321–331.
  • Blanco RM, Calvete JJ, Guisan JM. Immobilization-stabilization of enzymes. Variables that control the intensity of the trypsin (amine)- agarose (aldehyde) multi-point covalent attachment. Enzyme Microb Technol. 1988;11:353–359.
  • Yudianti R, Onggo H, Sudirman, Saito Y, Iwata T, Azuma JI. Analysis of functional group sited on multi-wall carbon nanotube surface. Open Mater Sci J. 2011;5:242–247.
  • Romdhane IB, Fendri A, Gargouri Y, Gargouri A, Belghith H. A novel thermoactive and alkaline lipase from Talaromyces thermophilus fungus for use in laundry detergents. Biochem Eng J. 2010;53:112–120.
  • Chatterjeet S, Yadav D, Barbora L, Mahanta P, Goswami P. Silk-cocoon matrix immobilized lipase catalyzed transesteri fication of sunflower oil for production of biodiesel. J Catal. 2014;2014:1–7.
  • Abdul Rahman MB, Zaidan UH, Basri M, Othman SS, Abdul Rahman RNZR, Salleh AB. Modification of natural feldspar as support for enzyme immobilization. J Nucl Relat Technol. 2009;6(1) 25–42.
  • Wan L-S, Ke B-B, Wu J, Xu Z-K. Catalase immobilization on electrospun nanofibers: effects of porphyrin pendants and carbon nanotubes. J Phys Chem C. 2007;111:14091–14097.
  • Koster AJ, Ziese U, Verkleij AJ, Janssen AH, de Jong KP. Three-dimensional transmission electron microscopy: a novel imaging and characterization technique with nanometer scale resolution for materials science. J Phys Chem B. 2000;104:9368–9370.
  • Hayat MA. Positive staining for electron microscopy. New York (NY): Van Nostrand Reinhold Company; 1975.
  • Noureddini H, Gao X. Characterization of sol-gel immobilized lipases. J Solgel Sci Technol. 2007;41:31–41.
  • Song C, Sheng L, Zhang X. Immobilization and characterization of a thermostable lipase. Mar Biotechnol. 2013;15:659–667.
  • Shah S, Solanki K, Gupta MN. Enhancement of lipase activity in non-aqueous media upon immobilisation on multi-walled carbon nanotubes. Chem Cent J. 2007;1:30.
  • Zhai R, Zhang B, Wan Y, Li C, Wang J, Liu J. Chitosan–halloysite hybrid-nanotubes: horseradish peroxidase immobilization and applications in phenol removal. Chem Eng J. 2013;214:304–309.
  • Liu X, Liu Y, Shen R, Liu H. Immobilization of lipase onto micron-sized magnetic bead. J Chromatogr B. 2005;822(1–2):1–7.
  • Bai S, Guo Z, Liu W, Sun Y. Resolution of (±)-menthol by immobilized Candida rugosa lipase on superparamagnetic nanoparticles. Food Chem. 2006;96:1–7.
  • Winograd N, Gaarenstroom SW. In: Kuwana T, editor. Physical methods in modern chemical analysis. Vol. 2. New York (NY): Academic Press; 1980. p. 117.
  • Zhang YW, Prabhu P, Lee JK. Alginate immobilization of recombinant Escherichia coli whole cells harboring L-arabinose isomerase for L-ribulose production. Bioprocess Biosyst Eng. 2010;33:741–748.
  • Brundle CR, Conti G, Mack P. XPS and angle resolved XPS, in the semiconductor industry: characterization and metrology control of ultra-thin films. J Electron Spectrosc Relat Phenomena. 2010;178–179:433–448.
  • Gole JL. Direct synthesis of silicon nanowires, silica nanospheres, and wire-like nanospheres agglomerates. Appl Phys Lett. 2000;76:2346.
  • Chusuei CC, Goodman DW. X-ray photoelectron spectroscopy. In: Meyers RA, editor. Encyclopedia of physical science and technology. Vol. 17. 3rd ed. New York (NY): Academic Press; 2002. p. 921–938.
  • Ye D-X, Pimanpang S, Jezewski C, Tang F, Senkevich JJ, Wang G-G, Lu T-M. Low temperature vapor chemical deposition of Co thin films from Co2(CO)8. Thin Solid Films. 2005;485:95–100.
  • Al-Bataineh SA, Britcher LG, Griesser HJ. Rapid radiation degradation in the XPS analysis of antibacterial coatings of brominated furanones. Surf Interface Anal. 2006;38:1512–1518.
  • Moulder JF, Stickle WF, Sobol PE, Bomben KD. Handbook of x-ray photoelectron spectroscopy. Eden Prairie (MN): Perkin-Elmer Corp; 1992.
  • Sonnichsen C, Reinhard BM, Liphardt J, Alivisatos APA. Molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol. 2005;23:741–745.
  • Schuck P, McPhee CE, Howlett GJ. Determination of sedimentation coefficients for small peptides. Biophys J. 1998;74:466–474.
  • Jung M, Hubert DHW, van Veldhoven E, Frederik PM, Blandamer MJ, Briggs B, Visser AJWG, van Herk AM, German AL. Interaction of styrene with DODAB bilayer vesicles. Influence on vesicle morphology and bilayer properties. Langmuir. 2000;16(3):968–979.
  • Zhao J, Das A, Schatz GC, Sligar ST, Van Duyne RP. Resonance localized surface plasmon spectroscopy: sensing substrate and inhibitor binding to cytochrome P450. J Phys Chem. 2008;112:13084–13088.
  • Claridge SA, Schwartz JJ, Weiss PS. Electrons, photons, and force: quantitative single-molecule measurements from physics to biology. ACS Nano. 2011;5:693–729.
  • Ribeiro Jr EA, Ramos CHI. Circular permutation and deletion studies of myoglobin indicate that the correct position of its N terminus is required for native stability and solubility but not for native-like heme binding and folding. Biochemistry. 2005;44:4699–4709.
  • Balan A, Santa-Cruz CP, Moutran A, Ferreira RCC, Medrano FJ, Pérez CA, Ramos CHI, Ferreira LCS. The molybdate-binding protein (ModA) of the phytopathogen Xanthomonas axonopodis pv citri. Protein Expr Purif. 2006;50:215–222.
  • Regis WCB, Fattori J, Santoro MM, Jamin M, Ramos CHI. On the difference in stability between horse and sperm whale myoglobins. Arch Biochem Biophys. 2005;436:168–177.
  • Correa DHA, Ramos CHI. The use of circular dichroism spectroscopy to study protein folding, form and function. Afr J Biochem Res. 2009;3:164–173.
  • Kelly SM, Price NC. Circular dichroism to study protein interactions. Current Protocols in Protein Science. 2006. Chapter 20, Unit 20.10. New York (NY): Wiley Interscience.
  • Cary PD, Kneale GG. Circular dichroism for the analysis of protein-DNA interactions. Methods Mol Biol. 2009;543:613–624.
  • Mittal S, Singh LR. Denatured state structural property determines protein stabilization by macromolecular crowding: a thermodynamic and structural approach. PLOS One. 2013;8(11):e78936.
  • Greenfield NJ. Analysis of the kinetics of folding of protein and peptides using circular dichroism. Nat Protoc. 2006;1:2891–2899.
  • Binning G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986;56:930–933.
  • Marcuello C, de Miguel R, Gómez-Moreno C, Martínez-Júlvez M, Lostao A. An efficient method for enzyme immobilization evidenced by atomic force microscopy. Protein Eng Des Sel. 2012;25:715–723.
  • Merkel R, Nassoy P, Leung A, Ritchie K, Evans E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature. 1999;497:50–53.
  • Yan XD, Xu XK, Ji H-F. Detection of femtomolar concentrations of HF using an SiO2 microcantilever. Anal Chem. 2005;77:6197–6204.
  • De Pablo P, Colchero J, Gomez-Herrero J, Baro´ AM. Jumping mode scanning force microscopy. Appl Phys Lett. 1998;73:3300–3302.
  • Sotres J, Lostao A, Wildling L, Ebner A, Gomez-Moreno C, Gruber HJ, Hinterdorfer P, Baro´ AM. Unbinding molecular recognition force maps of localized single receptor molecules by atomic force microscopy. Chem Phys Chem. 2008;9:590–599.
  • Zhang P, Tan W. Atomic force microscopy for the characterization of immobilized enzyme molecules on biosensor surfaces. Fresenius J Anal Chem. 2001;369:302–307.
  • Wadso I. Microcalorimetric techniques for characterization of living cellular systems. Will there be any important practical applications? Thermochim Acta. 1995;269/270:337–350.
  • Battistel E, Rialdi G. Characterization of immobilized enzymes by microcalorimetry. Methods Biotechnol. 2006;22:295–310.
  • Russel M, Chen H, Yao J, Wang F, Zhou Y, Choi MMF, Zaray G, Trebse P. Different technique of calorimetry and their applications to environmental sciences: a review. JASA. 2009;5:194–208.
  • Prashant P. Application of microcalorimeter in stability study [Internet]. Anand (India): Department of Pharmaceutical Technology, Indukaka Ipcowala College of Pharmacy; c2012 [cited 2013 Feb 12]. Available from: http://www.slideshare.net/pr-prashantpatel/application-of-microcalorimeter-in-stability-study.
  • Griko YV, Makhatadze GI, Privalov PL, Hartley RW. Thermodynamics of barnase unfolding. Protein Sci. 1994;3:669–676.
  • Wintrode PL, Makhatadze GI, Privalov PL. Thermodynamics of ubiquitin unfolding. Proteins. 1994;18:246–253.
  • Stryer L. Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem. 1978;47:819–846.
  • Lakowicz JR. Energy transfer. In: Feng J, editor. Principles of fluorescence spectroscopy. 2nd ed. New York (NY): Wiley Plenum Press; 1983. p. 367–394.
  • Berney C, Danuser G. FRET or no FRET: a quantitative comparison. Biophys J. 2003;84:3992–4010.
  • Cardullo RA. Principles of non-radiative FRET: the spectroscopic ruler. Microsc Anal. 2002;15:19–21.
  • Cardullo RA. Theoretical principles and practical considerations for fluorescence resonance energy by transfer microscopy. Methods Cell Biol. 2013;114:441–456.
  • Stryer L, Haugland RP. Energy transfer – a spectroscopic ruler. Proc Natl Acad Sci USA. 1967;58:719–726.
  • Hussain SA. An introduction to fluorescence resonance energy transfer (FRET). Sci J Phys. 2012;2012:4.
  • Tetin S. Fluorescence fluctuation spectroscopy (FFS). Part B. In: Tetin S, editor. Methods in enzymology. Vol 519. Amsterdam: Academic Press, Elsevier; 2013.
  • Kenworthy AK. Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy. Methods. 2001;24:289–296.
  • Xu X, Brzostowski JA, Jin T. Using quantitative fluorescence microscopy and FRET imaging to measure spatiotemporal signaling events in single living cells. Methods Mol Biol. 2006;346:281–296.
  • Nienhaus GU. Exploring protein structure and dynamics under denaturing conditions by single-molecule FRET analysis. Macromol Biosci. 2006;6:907–922.
  • Elangovan M, Day RN, Periasamy A. Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell. J Microsci. 2002;205:3–14.
  • Giepmans BNG, Adams SR, Ellisman MH, Tsien RY. The fluorescent toolbox for assessing protein location and function. Science. 2006;312:217–224.
  • Souto RM, Lamaka SV, González S. Uses of scanning electrochemical microscopy in corrosion research. Microsc Sci Technol Appl Educ. 2010;3:1769–1780.
  • Amemiya S, Bard AJ, Fan FRF, Mirkin MV, Unwin PR. Scanning electrochemical microscopy. Annu Rev Anal Chem. 2008;1:95–131.
  • Lu X, Wang Q, Liu X. Review: recent applications of scanning electrochemical microscopy to the study of charge transfer kinetics. Anal Chim Acta. 2007;601:10–25.
  • Mirkin MV, Horrocks BR. Electroanalytical measurements using the scanning electrochemical microscope. Anal Chim Acta. 2000;406:119–146.
  • Pust SE, Maier W, Wittstock G. Investigation of localized catalytic and electrocatalytic processes and corrosion reactions with scanning electrochemical microscopy (SECM). Zeitschrift für Physikalische Chemie. 2008;222:1463–1517.
  • Sun P, Laforge FO, Mirkin MV. Scanning electrochemical microscopy in the 21st century. Phys Chem Chem Phys. 2007;9:802–823.
  • Stoica L, Neugebauer S, Schuhmann W. Scanning electrochemical microscopy (SECM) as a tool in biosensor research. Adv Biochem Eng Biotechnol. 2008;109:455–492.
  • Edwards MA, Martin S, Whitworth AL, Macpherson JV, Unwin PR. Scanning electrochemical microscopy: principles and applications to biophysical systems. Physiol Meas. 2006;27:R63–R108.
  • Noël JM, Zigah D, Simonet J, Hapiot P. Synthesis and immobilization of Ag(0) nanoparticles on diazonium modified electrodes: SECM and cyclic voltammetry studies of the modified interfaces. Langmuir. 2010;26(10):7638–7643.
  • Zigah D, Pellissier M, Fabre B, Barrière F, Hapiot P. Covalent immobilization and SECM analysis in feedback mode of glucose oxidase on a modified oxidized silicon surface. J Electroanal Chem. 2008;628:144–147.
  • Bard AJ, Fan F-RF, Pierce DT, Unwin PR, Wipf DO, Zhou F. Chemical imaging of surfaces with the scanning electrochemical microscope. Science. 1991;254:68–74.
  • Pyo M, Bard AJ. Scanning electrochemical microscopy: determination of diffusion coefficients and concentrations of Ru(NH3)(6)(3+) and methylene blue in polyacrylamide films by chronoamperometry at ultramicrodisk electrodes. Electrochim Acta. 1997;42:3077–3083.
  • Liu B, Mirkin MV. Charge transfer reactions at the liquid/liquid interface. Anal Chem. 2001;73:670A–677A.
  • Pierce DT, Unwin PR, Bard AJ. Scanning electrochemical microscopy. XVII. Studies of enzyme-mediator kinetics for membrane-and-surface-immobilised glucose oxidase. Anal Chem. 1992;64:1795–1804.
  • Wittstock G, Yu K-J, Halsall HB, Ridgeway TH, Heineman WR. Imaging of immobilized antibody layers with scanning electrochemical microscopy. Anal Chem. 1995;67:3578–3582.
  • Shiku H, Matsue T, Uchida I. Detection of microspotted carcinoembryonic antigen on a glass substrate by scanning electrochemical microscopy. Anal Chem. 1996;68:1276–1278.
  • Liu B, Rotenberg SA, Mirkin MV. Scanning electrochemical microscopy of living cells: different redox activities of nonmetastatic and metastatic human breast cells. Proc Natl Acad Sci USA. 2000;97:9855–9860.
  • Cai CX, Liu B, Mirkin MV, Frank HA, Rusling JF. Scanning electrochemical microscopy of living cells: Rhodobacter sphaeroide. Anal Chem. 2002;74:114–119.
  • Fan FRF, Bard AJ. Imaging of biological macromolecules on mica in humid air by scanning electrochemical microscopy. Proc Natl Acad Sci USA. 1999;96:14222–14227.
  • Wang J, Zhou F. Scanning electrochemical microscopic imaging of surface-confined DNA probes and their hybridization via guanine oxidation. J Electroanal Chem. 2002;537:95–102.
  • Yamashita K Takagi M, Uchida K, Kondo H, Takenaka K. Visualization of DNA microarrays by scanning electrochemical microscopy. Analyst. 2001;126:1210–1211.
  • Freeman M. Proteins at solid-liquid interfaces. Heidelberg: Springer Verlag; 2006.
  • Belu AM, Graham DJ, Castner DG. Time-of-flight secondary ion mass spectrometry: techniques and applications for the characterization of biomaterial surfaces. Biomaterials. 2003;24:3635–3653.
  • Adriaens A, Van Vaeck L, Adams F. Static secondary ion mass spectrometry (S-SIMS) part 2: material science applications. Mass Spectrom Rev. 1999;18:48–81.
  • Zheng L, McQuaw CM, Baker MJ, Lockyer NP, Vickerman JC, Ewing AG, Winograd N. Investigating lipid-lipid and lipid-protein interactions in model membranes by TOF-SIMS. Appl Sci Surf. 2008;255:1190–1192.
  • Johansson P. Characterization of protein surface interactions: collagen and osteocalcin [master's thesis]. Sweden: Linköping University; 2013.
  • Thiel V, Sjövall P. Using time-of-flight secondary ion mass spectrometry to study biomarkers. Rev Adv. 2011;39:125–156.
  • Trzcinska R, Piotr S, Bodzon-Kulakowska A, Skalska M, Andrzej M, Kubacki J, Pedrys R, Silberrin J, Dworak A, Trzebicka B. Synthesis and characterisation of PEG-peptide surfaces for proteolytic enzyme detection. Anal Bioanal Chem. 2013;405:9049–9059.
  • Benninghoven A. Chemical analysis of inorganic and organic surfaces and thin films by static time-of-flight secondary ion mass spectrometry (TOF-SIMS). Angewandte Chemie Int (in English). 1994;33(10):1023–1043.
  • Lee J, Ceglia A, Kim K-J, Lee Y-H. Characterization of dyed textiles using TOF-SIMS and FT-IR. Surf Interface Anal. 2012;6:653–657.
  • Baio JE, Weidner T, Interlandi G, Mendoza-Barrera C, Canavan HE, Michel R, Castner DG. Probing albumin adsorption onto calcium phosphates by x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. J Vacuum Sci Technol B [Internet]. 2011 [cited 2013 March 5];29:04D113. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260791/.