2,056
Views
23
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

Desorption kinetics of polycyclic aromatic hydrocarbons (PAHs) from contaminated soil and the effect of biosurfactant supplementation on the rapidly desorbing fractions

&
Pages 680-688 | Received 05 Nov 2014, Accepted 09 Mar 2015, Published online: 13 Apr 2015

References

  • Xue W, Warshawsky D. Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol. 2005;206(1):73–93.
  • Chadhain SMN, Norman RS, Pesce KV, Kukor JJ, Zylstra GJ. Microbial dioxygenase gene population shifts during polycyclic aromatic hydrocarbon biodegradation. Appl Environ Microbiol. 2006;72(6):4078–4087.
  • Thenmozhi R. Characterization of microorganisms degrading used engine oil [dissertation]. Thiruchirappalli: Bharathidasan University; 2013. Available from: http://www.hdl.handle.net/10603/9642.
  • Ouvrard S, Leglize P, Morel JL. PAH phytoremediation: rhizodegradation or rhizoattenuation? Int J Phytoremediation. 2014;16(1):46–61.
  • Barnier C, Ouvrard S, Robin C, Morel JL. Desorption kinetics of PAHs from aged industrial soils for availability assessment. Sci Total Environ. 2014;470:639–645.
  • Kanaly RA, Harayama S. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol. 2000;182(8):2059–2067.
  • Elliot R, Singhal N, Swift S. Surfactants and bacterial bioremediation of polycyclic aromatic hydrocarbon contaminated soil—unlocking the targets. Crit Rev Env Sci Technol. 2010;41(1):78–124.
  • Castaldini F. Bioremediation of PAHs - limitations and soultions [dissertation]. Bologna: Università di Bologna; 2008. Available from: http://www.amslaurea.unibo.it/130/.
  • Zhu H, Aitken MD. Surfactant-enhanced desorption and biodegradation of polycyclic aromatic hydrocarbons in contaminated soil. Environ Sci Technol. 2010;44(19):7260–7265.
  • Fortin N, Beaumier D, Lee K, Greer CW. Soil washing improves the recovery of total community DNA from polluted and high organic content sediments. J Microbiol Methods. 2004;56(2):181–191.
  • Li H, Chen J, Jiang L. Elevated critical micelle concentration in soil–water system and its implication on PAH removal and surfactant selecting. Environ Earth Sci. 2014;71(9):3991–3998.
  • Alcántara MT, Gómez J, Pazos M, Sanromán M. PAHs soil decontamination in two steps: desorption and electrochemical treatment. J Hazard Mater. 2009;166(1):462–468.
  • Yu H, Huang G H, An C J, Wei J. Combined effects of DOM extracted from site soil/compost and biosurfactant on the sorption and desorption of PAHs in a soil–water system. J Hazard Mater. 2011;190(1):883–890.
  • Yang XH, Garnier P, Wang SZ, Bergheaud V, Huang XF, Qiu RL. PAHs sorption and desorption on soil influenced by pine needle litter-derived dissolved organic matter. Pedosphere. 2014;24(5):575–584.
  • Urum K, Pekdemir T, Gopur M. Optimum conditions for washing of crude oil-contaminated soil with biosurfactant solutions. Process Saf Environ Prot. 2003;81(3):203–209.
  • Muherei MA, Junin R. Effect of electrolyte on synergism of anionic-nonionic surfactant mixture. J Appl Sci. 2007;7:1362–1371.
  • Vreysen S, Maes A. Remediation of a diesel contaminated, sandy-loam soil using low concentrated surfactant solutions. J Soils Sediments. 2005;5(4):240–244.
  • Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS. Environmental applications of biosurfactants: recent advances. Int J Mol Sci. 2011;12(1);633–654.
  • Pei XH, Zhan XH, Wang SM, Lin YS, Zhou LX. Effects of a biosurfactant and a synthetic surfactant on phenanthrene degradation by a Sphingomonas strain. Pedosphere. 2010;20(6):771–779.
  • Wang C, Liu H, Li J, Sun H. Degradation of PAHs in soil by Lasiodiplodia theobromae and enhanced benzo [a] pyrene degradation by the addition of Tween-80. Environ Sci Pollut Res. 2014;21(18):10614–10625.
  • Mulligan CN, Yong RN, Gibbs BF. Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol. 2001;60(1):371–380.
  • Kuyukina MS, Ivshina IB, Makarov SO, Litvinenko L V, Cunningham CJ, Philp JC. Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Environ Int. 2005;31(2):155–161.
  • Pignatello JJ, Xing B. Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol. 1995;30(1):1–11.
  • Cornelissen G, van Noort PC, Govers H A. Mechanism of slow desorption of organic compounds from sediments: a study using model sorbents. Environ Sci Technol. 1998;32(20):3124–3131.
  • Prichard H, Jones-Meehan J, Nestler C, Hansen LD, Straube W, Jones W, Talley JW. Polycyclic aromatic hydrocarbons (PAHs): improved land treatment with bioaugmentation. In: Talley J, editor. Bioremediation of recalcitrant compounds. Boca Raton, FL: CRC Press; 2006. p. 215–300.
  • Bajpai R, Felt DR, Nestler CC, Wani A, Spain JC. Federal Integrated Biotreatment Research Consortium (FIBRC): flask to field initiative (no. ERDC/EL-TR-02-37). Vicksburg (MS): U.S. Army Engineer Research and Development Center; 2002.
  • Cuypers C, Pancras T, Grotenhuis T, Rulkens W. The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-β-cyclodextrin and Triton X-100 extraction techniques. Chemosphere. 2002;46(8):1235–1245.
  • Poot A, Jonker MTO, Gillissen F, Koelmans AA. Explaining PAH desorption from sediments using Rock Eval analysis. Environ Pollut. 2014;193:247–253.
  • Congiu E, Ortega-Calvo JJ. Role of desorption kinetics in the rhamnolipid-enhanced biodegradation of polycyclic aromatic hydrocarbons. Environ Sci Technol. 2014;48(18):10869–10877.
  • Liste HH, Alexander M. Butanol extraction to predict bioavailability of PAHs in soil. Chemosphere. 2002;46(7):1011–1017.
  • Bezza FA, Chirwa EM. Optimization strategy of polycyclic aromatic hydrocarbon contaminated media bioremediation through biosurfactant addition. Chem Eng Trans. 2014;39:1597–1602.
  • Vasileva-Tonkova E, Gousterova A, Neshev G. Ecologically safe method for improved feather wastes biodegradation. Int Biodeterioration Biodegradation. 2009;63(8):1008–1012.
  • Ramana KV, Karanth NG. Factors affecting biosurfactant production using Pseudomonas aeruginosa CFTR-6 under submerged conditions. J Chem Technol Biotechnol. 1989;45(4):249–257.
  • Trummler K, Effenberger F, Syldatk C. An integrated microbial/enzymatic process for production of rhamnolipids and L-(+)-rhamnose from rapeseed oil with Pseudomonas sp. DSM 2874. Eur J Lipid Sci Technol. 2003;105(10):563–571.
  • Ghurye GL, Vipulanandan C, Willson RC. A practical approach to biosurfactant production using nonaseptic fermentation of mixed cultures. Biotechnol Bioeng. 1994;44(5):661–666.
  • United States Environmental Protection Agency (US EPA). Ultrasonic extraction, method USEPA 3550B. Washington (DC): US EPA; 1996.
  • Cooper DG, Goldenberg BG. Surface-active agents from two Bacillus species. Appl Environ Microbiol.1987;53(2):224–229.
  • United States Environmental Protection Agency (US EPA). Method 8310, polynuclear aromatic hydrocarbons. Washington (DC): US EPA; 1986.
  • Cheng KY, Zhao ZY, Wong JWC. Solubilization and desorption of PAHs in soil aqueous system by biosurfactants produced from Pseudomonas aeruginosa P-CG3 under thermophilic condition. Environ Technol. 2004;25(10):1159–1165.
  • Zhang G, Liu X, Sun K, Zhao Y, Lin C. Sorption of tetracycline to sediments and soils: assessing the roles of pH, the presence of cadmium and properties of sediments and soils. Front Environ Sci Eng. 2010;4(4):421–429.
  • Greenberg MS, Burton GA, Landrum PF, Leppänen MT, Kukkonen JV. Desorption kinetics of fluoranthene and trifluralin from Lake Huron and Lake Erie, USA, sediments. Environ Toxicol Chem. 2005;24(1):31–39.
  • Ward OP. Microbial biosurfactants and biodegradation. In: Sen R, editor. Biosurfactants. Advances in experimental medicine and biology. Vol. 672. New York (NY): Springer Science+Business Media; 2010. p. 65–74.
  • Sarubbo LA, de Luna JM, Rufino RD, Farias CBB, Santos VA. Production of biosurfactants for application in the removal of hydrophobic contaminants originated by the petroleum industry. Chem Eng Trans. 2012;27:7–12
  • Zheng G, Wong JW. Application of microemulsion to remediate organochlorine pesticides contaminated soils. In Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy; 2010. Vol. 15, Article 1. Available from: http://scholarworks.umass.edu/soilsproceedings/vol15/iss1/1.
  • Schwab K, Brack W. Large volume TENAX® extraction of the bioaccessible fraction of sediment-associated organic compounds for a subsequent effect-directed analysis. J Soils Sediments. 2007;7(3):178–186.
  • Van Noort P, Cornelissen G, ten Hulscher TE, Vrind BA, Rigterink H, Belfroid A. Slow and very slow desorption of organic compounds from sediment: influence of sorbate planarity. Water Res. 2003;37(10):2317–2322.
  • Brinck J, Jönsson B, Tiberg F. Influence of long-chain alcohols on the adsorption of nonionic surfactants to silica. Langmuir. 1999;15(22):7719–7724.
  • Richardson SD, Aitken MD. Desorption and bioavailability of polycyclic aromatic hydrocarbons in contaminated soil subjected to long-term in situ biostimulation. Environ Toxicol Chem. 2011; 30(12):2674–2681.
  • Cornelissen G, van Noort P, Govers HA. Desorption kinetics of chlorobenzenes, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls: sediment extraction with Tenax® and effects of contact time and solute hydrophobicity. Environ Toxicol Chem. 1997;16(7):1351–1357.
  • Sverdrup LE, Nielsen T, Krogh PH. Soil ecotoxicity of polycyclic aromatic hydrocarbons in relation to soil sorption, lipophilicity, and water solubility. Environ Sci Technol. 2002;36(11):2429–2435.
  • Loehr RC, Lamar MR, Poppendieck DG. A protocol to estimate the release of anthropogenic hydrocarbons from contaminated soils. Environ Toxicol Chem. 2003;22(9):2202–2208.
  • Zhou W, Zhu L. Efficiency of surfactant-enhanced desorption for contaminated soils depending on the component characteristics of soil-surfactant–PAHs system. Environ Pollut. 2007;147(1):66–73.
  • Yang K, Zhu L, Xing B. Enhanced soil washing of phenanthrene by mixed solutions of TX100 and SDBS. Environ Sci Technol. 2006;40(13):4274–4280.
  • Zheng G, Selvam A, Wong JW. Enhanced solubilisation and desorption of organochlorine pesticides (OCPs) from soil by oil-swollen micelles formed with a nonionic surfactant. Environ Sci Technol. 2012;46(21):12062–12068.
  • Lai CC, Huang YC, Wei YH, Chang JS. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J Hazard Mater. 2009;167(1):609–614.
  • An CJ, Huang GH, Wei J, Yu H. Effect of short-chain organic acids on the enhanced desorption of phenanthrene by rhamnolipid biosurfactant in soil–water environment. Water Res. 2011:45(17),5501–5510.
  • Sánchez-Trujillo MA, Morillo E, Villaverde J, Lacorte S. Comparative effects of several cyclodextrins on the extraction of PAHs from an aged contaminated soil. Environ Pollut. 2013;178(1):52–58.
  • Franzetti A, Gandolfi I, Bestetti G, Banat IM. Biosurfactant and bioremediation, successes and failures. In: Plaza G, editor. Trends in bioremediation and phytoremediation. Kerala: Research Signpost; 2011. p. 145–156.
  • Mahmoudi N, Slater GF, Juhasz AL. Assessing limitations for PAH biodegradation in long-term contaminated soils using bioaccessibility assays. Water Air Soil Pollut. 2013;224(2):1–11.