16,796
Views
19
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum L. cv. Hezuo 908) with improved efficiency

, , , , , & show all
Pages 861-868 | Received 01 Mar 2015, Accepted 27 May 2015, Published online: 29 Jun 2015

References

  • Barone A, Di Matteo A, Carputo D, et al. High-throughput genomics enhances tomato breeding efficiency. Curr Genomics. 2009;10:1–9.
  • Garcia D, Narvaez-Vasquez J, Orozco-Cardenas ML. Tomato (Solanum lycopersicum). Methods Mol Biol. 2015;1223:349–361.
  • McCormick S, Niedermeyer J, Fry J, et al. Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep. 1986;5:81–84.
  • McBride KE, Summerfelt KR. Improved binary vectors for Agrobacterium-mediated plant transformation. Plant Mol Biol. 1990;14:269–276.
  • Kimura S, Sinha N. Tomato transformation. CSH Protoc. 2008; 2008:pdb prot5084.
  • van Roekel JS, Damm B, Melchers LS, et al. Factors influencing transformation frequency of tomato (Lycopersicon esculentum). Plant Cell Rep. 1993;12:644–647.
  • Sun HJ, Uchii S, Watanabe S, et al. A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol. 2006;47:426–431.
  • Yasmeen A. An improved protocol for the regeneration and transformation of tomato (cv Rio Grande). Acta Physiologiae Plantarum. 2009;31:1271–1277.
  • Sun S, Kang XP, Xing XJ, et al. Transient expression of siRNA targeted against the TYLCV AV1, AC1 and AC3 genes for high resistance in tomato. Scientia Horticulturae. 2014;179:321–327.
  • Yang ZA, Zhang YH, Ding YM, et al. Study on genetic transformation of tomato using AGPase anti-sense gene. J Yunnan Agric Univ (Nat Sci Edition). 2008;23:158–161.
  • Su CX, Huo XW, Tan QH, et al. The establishment of plant regeneration from cotyledon and hypocotol explants of tomato (Lycopersicon esculentum Mill.). J Inner Mongolia Agric Univ. 2006;4:91–95.
  • Jefferson RA, Kavanagh TA, Bevan MW. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987;6:3901–3907.
  • Chang L, Zhang Z, Yang H, et al. Detection of strawberry RNA and DNA viruses by RT-PCR using total nucleic acid as a template. J Phytopathol. 2007;155:431–436.
  • Ingham DJ, Beer S, Money S, et al. Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotech. 2001;31:132–140.
  • Mason G, Provero P, Vaira AM, et al. Estimating the number of integrations in transformed plants by quantitative real-time PCR. BMC Biotechnol. 2002;2:20.
  • Wang YH, Zhao S, Chen F, et al. Estimation of the copy number of exogenous gene in transgenic rice by real-time fluorescence quantitative PCR. Life Sci Res. 2007;11:301–305.
  • Arshad W, Haq IU, Waheed MT, et al. Agrobacterium-mediated transformation of tomato with rolB gene results in enhancement of fruit quality and foliar resistance against fungal pathogens. PLOS One. 2014;9:e96979.
  • Park SH, Morris JL, Park JE, et al. Efficient and genotype-independent Agrobacterium-mediated tomato transformation. J Plant Physiol. 2003;160:1253–1257.
  • Vinoth S, Gurusaravanan P, Jayabalan N. Optimization of factors influencing microinjection method for Agrobacterium tumefaciens-mediated transformation of tomato. Appl Biochem Biotechnol. 2013;169:1173–1187.
  • Ron M, Kajala K, Pauluzzi G, et al. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol. 2014;166:455–469.
  • Satyavathi VV, Prasad V, Lakshmi BG, et al. High efficiency transformation protocol for three Indian cotton varieties via Agrobacterium tumefaciens. Plant Sci. 2002;162:215–223.
  • Recillas-Targa F. Multiple strategies for gene transfer, expression, knockdown, and chromatin influence in mammalian cell lines and transgenic animals. Mol Biotechnol. 2006;34:337–354.
  • Kim TK, Eberwine JH. Mammalian cell transfection: the present and the future. Anal Bioanal Chem. 2010;397:3173–3178.
  • Dan Y, Yan H, Munyikwa T, et al. MicroTom-a high-throughput model transformation system for functional genomics. Plant Cell Rep. 2006;25:432–441.
  • Koul B, Srivastava S, Sanyal I, et al. Transgenic tomato line expressing modified Bacillus thuringiensis cry1Ab gene showing complete resistance to two lepidopteran pests. Springerplus. 2014;3:84.
  • Gao D, Huibers RP, Loonen AE, et al. Down-regulation of acetolactate synthase compromises Ol-1- mediated resistance to powdery mildew in tomato. BMC Plant Biol. 2014;14:32.
  • Gong B, Li X, VandenLangenberg KM, et al. Overexpression of S-adenosyl-L-methionine synthetase increased tomato tolerance to alkali stress through polyamine metabolism. Plant Biotechnol J. 2014;12:694–708.
  • Gisbert C, Rus AM, Bolarin MC, et al. The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiol. 2000;123:393–402.
  • Zhang H, Zhao L, Chen Y, et al. Expression of human coagulation Factor IX in transgenic tomato (Lycopersicon esculentum). Biotechnol Appl Biochem. 2007;48:101–107.
  • Wurbs D, Ruf S, Bock R. Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J. 2007;49:276–288.
  • Mao YB, Cai WJ, Wang JW, et al. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol. 2007;25:1307–1313.