6,837
Views
80
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride

, , , , &
Pages 299-304 | Received 11 Aug 2015, Accepted 15 Dec 2015, Published online: 28 Jan 2016

References

  • Vijayakumar M, Priya K, Nancy FT, et al. Biosynthesis, characterization and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Ind Crops Products. 2013;41:235–240.
  • Gade A, Ingle A, Bawaskar M, et al. Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanoparticle Res. 2009;11:2079–2085.
  • Neveen-Mohamed K. Biogenic silver nanoparticles by Aspergillus terreus as a powerful nanoweapon against Aspergillus fumigates. Afr J Microbiol Res. 2014;7:5645–5651.
  • Husseiny MI, Aziz MAE, Badr Y, et al. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochimica Acta Part A. 2006;67:1003–1006.
  • El-Shanshoury AER, ElSilk SE, Ebeid ME. Extracellular biosynthesis of silver nanoparticles using Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633, and Streptococcus thermophilus ESh1 and their antimicrobial activities. ISRN Nanotechnol. 2011;2011:385480.
  • Peter L, Silambarasan S, Abraham J. Ecofriendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties. Scientia Iranica. 2013;20:1049–1054.
  • Deenadayalan AK, Palanichamy V, Selvaraj MR. Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity. Spectrochimica Acta Part A. 2014;127:168–171.
  • Peter L, Sivagnanam S, Abraham J. Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J Saudi Chem Soc. 2015;19:311–317.
  • Li G, Dan HE, Yongqing Q, et al. Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci. 2012;13:466–476.
  • Devi TP, Kulanthaivel S, Kamil D, et al. Biosynthesis of silver nanoparticles from Trichoderma species. Indian J Exp Biol. 2013;51:543–547.
  • Vivek A, Jitendra K, Ritu S, et al. Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind Crops Products. 2014;55:202–206.
  • Grondona I, Hermosa MR, Tejada M, et al. Physiological and biochemical characterization of Trichoderma harzianum, a biocontrol agent against soil borne fungal plant pathogens. Appl Environ Microbiol. 1997;63:3189–3198.
  • Lunge AG, Anita SP. Characterization of efficient chitinolytic enzyme producing Trichoderma species: a tool for better antagonistic approach. Int J Sci Environ Technol. 2012;1:37–385.
  • Pragya T, Misra BN, Neelam SS. β-glucosidases from the fungus Trichoderma: an efficient cellulase machinery in biotechnological applications. BioMed Res Int. 2013;2013:203735.
  • Jeffrey GL, Larry ET, John OB, et al. A constitutive expression system for glycosyl hydrolase family 7 cellobiohydrolases in Hypocrea jecorina. Biotechnol Biofuels. 2015;8:8–20.
  • Silambarasan S, Abraham J. Biosynthesis of silver nanoparticles using Pseudomonas fluorescens. Res J Biotechnol. 2013;8:71–75.
  • Smitha SL, Nissamudeen KM, Philip D, et al. Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Spectrochimica Acta Part A. 2009;71:186–190.
  • Vahabi K, Mansoori GA, Karimi S. Biosynthesis of silver nanoparticles by fungus Trichoderma reesei. ‏Insciences J. 2011;1:65–79.
  • Mandal D, Bolander ME, Mukhopadhyay D, et al. The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol. 2006;69:485–492.
  • Liao J, Anchun M, Zhu ZQY. Antibacterial titanium plate deposited by silver nanoparticles exhibits cell compatibility. Int J Nanomedicine. 2010;13:337–342.
  • de Castro A, Pedro K, da Cruz J, et al. Trichoderma harzianum IOC-4038: a promising strain for the production of a cellulolytic complex with significant glucosidase activity from sugarcane bagasse cellulignin. Appl Biochem Biotechnol. 2010;162:2111–2122.
  • Liao J, Zhu Z, Anchun MO, et al. Deposition of silver nanoparticles on titanium surface for antibacterial effect. Int J Nanomedicine. 2010;14:261–267.
  • Rai MK, Deshmukh SD, Ingle AP, et al. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol. 2012;112:841–852.
  • Jana S, Pal T. Synthesis, characterization and catalytic application of silver nanoshell coated functionalized polystyrene beads. J Nanosci Nanotechnol. 2007;7:2151–2156.
  • Stiufiuc R, Iacovita C, Lucaciu CM, et al. SERS active silver colloids prepared by reduction of silver nitrate with short-chain polyethylene glycol. Nanoscale Res Lett. 2013;8:47.
  • Szmacinski H, Lakowicz JR, Catchmark JM, et al. Correlation between scattering properties of silver particle arrays and fluorescence enhancement. Appl Spectrosc. 2008;62;733–738.
  • Lazar V. Quorum sensing in biofilms-How to destroy the bacterial citadels or their cohesion/power? Anaerobe. 2011;17:280–285.
  • Donlan RM, Costerton JW. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clinical Microbiol Rev. 2002;15:167–193.
  • Taraszkiewicz A, Fila G, Grinholc M, et al. Innovative strategies to overcome biofilm resistance. Biomed Res Int. 2013;2013:150653.
  • Colin P, Zheng D, Muhi MZ, et al. Silver nanoparticle synthesis using monosaccharides and their growth inhibitory activity against Gram-negative and positive bacteria. ISRN Nanotechnol. 2014;2014:480284.
  • Shrivastava S, Bera T, Roy A. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18:225103–225112
  • Soo-Hwan K, Hyeong-Seon L, Deok-Seon R, et al. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J Microbiol Biotechnol. 2001;39:77–85.
  • Hanna LK, Pontus C, Yolanda H, et al. Cell membrane damage and protein interaction induced by copper containing nanoparticles-Importance of the metal release process. Toxicology. 2013;13:59–69.
  • Lok CN, Ho CM, Chen R, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res. 2006;5:916–924.
  • Elgorban AM, El-Samawaty AM, Yassin MA, et al. Antifungal silver nanoparticles: synthesis, characterization and biological evaluation. Biotechnol Biotechnol Equip. Forthcoming 2015. doi:10.1080/13102818.2015.1106339
  • Shaban RS, Bahkali AH, Marwa MB, et al. Antibacterial activity of biogenic silver nanoparticles produced by Aspergillus terreus. Int J Pharmacol. 2015;11:858–863.
  • Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–2353.
  • Kvitek L, Panacek A, Soukupova J, et al. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem. 2008;C112:5825–5834.