1,065
Views
2
CrossRef citations to date
0
Altmetric
Article; Food Biotechnology

Glucose repression of FLO11 gene expression regulates pellicle formation by a wild pellicle-forming yeast strain isolated from contaminated wine

, , , , , & show all
Pages 120-127 | Received 01 May 2016, Accepted 05 Oct 2016, Published online: 26 Oct 2016

References

  • Legras JL, Erny C, Charpentier C. Population structure and comparative genome hybridization of European flor yeast reveal a unique group of Saccharomyces cerevisiae strains with few gene duplications in their genome. PLoS One. 2014; 9:e108089.
  • Thuy PT, Elisabeth G, Pascal S, et al. Optimal conditions for the formation of sotolon from α-ketobutyric acid in the French "Vin Jaune". J Agric Food Chem. 1995;43:2616–2619.
  • Cortes MB, Moreno J, Zea L, et al. Changes in aroma compounds of sherry wines during their biological aging carried out by Saccharomyces cerevisiae races bayanus and capensis. J Agric Food Chem. 1998;46:2389–2394.
  • Collin S, Nizet S, Claeys Bouuaert T, et al. Main odorants in Jura flor-sherry wines. Relative contributions of sotolon, abhexon, and theaspirane-derived compounds. J Agric Food Chem. 2012;60:380–387.
  • Alexandre H. Flor yeasts of Saccharomyces cerevisiae – their ecology, genetics and metabolism. Int J Food Microbiol. 2013;167:269–275.
  • Iimura Y, Hara S, Otsuka K. Cell surface hydrophobicity as a pellicle formation factor in film strain of Saccharomyces. Agric Biol Chem. 1980;44:1215–1222.
  • Zara S, Gross MK, Zara G, et al. Ethanol-independent biofilm formation by a flor wine yeast strain of Saccharomyces cerevisiae. Appl Environ Microbiol. 2010;76:4089–4091.
  • Zara S, Antonio Farris G, Budroni M, et al. HSP12 is essential for biofilm formation by a Sardinian wine strain of S. cerevisiae. Yeast. 2002;19:269–276.
  • Hara S, Iimura Y, Otsuka K. Breeding of useful killer wine yeasts. Am J Enol Vitic. 1980;31:28–33.
  • Fidalgo M, Barrales RR, Ibeas JI, et al. Adaptive evolution by mutations in the FLO11 gene. Proc Natl Acad Sci USA. 2006;103:11228–11233.
  • Nakagawa Y, Toda Y, Yamamura H, et al. FLO11 is essential for pellicle formation by wild pellicle-forming yeasts isolated from contaminated wines. J Biosci Bioeng. 2011;111:7–9.
  • Kuchin S, Vyas VK, Carlson M. Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol. 2002;22:3994–4000.
  • Van de Velde S, Thevelein JM. Cyclic AMP-protein kinase A and Snf1 signaling mechanisms underlie the superior potency of sucrose for induction of filamentation in Saccharomyces cerevisiae. Eukaryot Cell. 2008;7:286–293.
  • Ishigami M, Nakagawa Y, Hayakawa M, et al. FLO11 is the primary factor in flor formation caused by cell surface hydrophobicity in wild-type flor yeast. Biosci Biotechnol Biochem. 2006;70:660–666.
  • Kovacs M, Stuparevic I, Mrsa V, et al. Characterization of Ccw7p cell wall proteins and the encoding genes of Saccharomyces cerevisiae wine yeast strains: relevance for flor formation. FEMS Yeast Res. 2008;8:1115–1126.
  • Rose MD, Winston F, Hieter P. Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 1990.
  • Kuroda S, Otaka S, Fujisawa Y. Fermentable and nonfermentable carbon sources sustain constitutive levels of expression of yeast triosephosphate dehydrogenase 3 gene from distinct promoter elements. J Biol Chem. 1994;269:6153–6162.
  • Wach A, Brachat A, Pohlmann R, et al. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast. 1994;10:1793–1808.
  • Brachmann CB, Davies A, Cost GJ, et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998;14:115–132.
  • Amberg DC, Botstein D, Beasley EM. Precise gene disruption in Saccharomyces cerevisiae by double fusion polymerase chain reaction. Yeast. 1995;11:1275–1280.
  • Zara G, Zara S, Pinna C, et al. FLO11 gene length and transcriptional level affect biofilm-forming ability of wild flor strains of Saccharomyces cerevisiae. Microbiology. 2009;155:3838–3846.
  • Carlson M. Glucose repression in yeast. Curr Opin Microbiol. 1999;2:202–207.
  • Gancedo JM. Yeast carbon catabolite repression. Microbiol Mol Biol Rev. 1998;62:334–361.
  • Schuller HJ. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet. 2003;43:139–160.
  • Meijer MM, Boonstra J, Verkleij AJ, et al. Glucose repression in Saccharomyces cerevisiae is related to the glucose concentration rather than the glucose flux. J Biol Chem. 1998;273:24102–24107.