1,068
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Molecular characterization of a glycoside hydrolase family-51 α-L-arabinofuranosidase from Auricularia auricula

, , , &
Pages 469-476 | Received 31 May 2016, Accepted 20 Jan 2017, Published online: 09 Feb 2017

References

  • Fan XZ, Zhou Y, Xiao Y, et al. Cloning, expression and phylogenetic analysis of a divergent laccase multigene family in Auricularia auricula-judae. Microbiol Res. 2014;169:453–462.
  • Misaki A, Kakuta M, Sasaki T, et al. Studies on interrelation of structure and antitumor effects of polysaccharides: antitumor action of periodate-modified, branched-beta-D-glucan of Auricularia auricula-judae, and other polysaccharides containing-glycosidic linkages. Carbohydr Res. 1981;92:115–129.
  • Ukai S, Kiho T, Hara C, et al. Polysaccharides in fungi XIV. Anti-inflammatory effect of the polysaccharides from the fruit bodies of several fungi. J Pharmacobio-Dyn. 1983;6:983–989.
  • Yuan Z, He P, Cui J, et al. Hypoglycemic effect of water-soluble polysaccharide from Auricularia auricula-judae Quel on genetically diabetic KK-Ay mice. Biosci Biotech Biochem. 1998;62:1898–1903.
  • Reza MA, Hossain MA, Damte D, et al. Hypolipidemic and hepatic steatosis preventing activities of the wood ear medicinal mushroom Auricularia auricula-judae (Higher Basidiomycetes) ethanol extract in vivo and in vitro. Int J Med Mushrooms. 2015;17:723–734.
  • Yoon SJ, Yu MA, Pyun YR, et al. The nontoxic mushroom Auricularia auricula contains a polysaccharide with anticoagulant activity mediated by antithrombin. Thromb Res. 2003;112:151–158.
  • Acharya K, Samui K, Rai M, et al. Antioxidant and nitric oxide synthase activation properties of Auricularia auricula. Indian J Exp Biol. 2004;42:538–540.
  • Khaskhelia SG, Zheng W, Sheikh SA, et al. Characterization of Auricularia auricula polysaccharides and its antioxidant properties in fresh and pickled product. Int J Biol Macromol. 2015;81:387–395.
  • Zou Y, Zhao Y, Hu WZ. Chemical composition and radical scavenging activity of melanin from Auricularia auricula fruiting bodies. Food Sci Tech. 2015;35:253–258.
  • Ohta K, Fujii S, Higashida C. Characterization of a glycoside hydrolase family-51 α-L-arabinofuranosidase gene from Aureobasidium pullulans ATCC 20524 and its encoded product. J Biosci Bioeng. 2013;116:287–292.
  • Puls J, Schuseil J. Chemistry of hemicelluloses: relationship between hemicellulose structure and enzymes required for hydrolysis. In: Coughlan MP, Hazlewood GP, editors. Hemicellulose and hemicellulases. London: Portland Press; 1993. p. 1e27.
  • Numan MT, Bhosle NB. Alpha-L-Arabinofuranosidases: the potential applications in biotechnology. J Ind Microbiol Biotechnol. 2006;33:247–260.
  • Coutinho PM, Henrissat B. Carbohydrate-active enzymes server at http://afmb.cnrs-mrs.fr/_/cazy/CAZY/index.html. 1999.
  • Davies G, Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure. 1995;3:853–859.
  • Luonteri E, Beldman G, Tenkanen M. Substrate specificities of Aspergillus terreus α-arabinofuranosidases. Carbohydr Polym. 1998;37:131–141.
  • Ravanal MC, Eyzaguirre J. Heterologous expression and characterization of α-L-arabinofuranosidase 4 from Penicillium purpurogenum and comparison with the other isoenzymes produced by the fungus. Fungal Biol. 2015;119:641–647.
  • Wirajana IN, Kimura T, Sakka K, et al. Secretion of Geobacillus thermoleovorans IT-08 α-L-Arabinofuranosidase (AbfA) in Saccharomyces cerevisiae by fusion with HM-1 signal peptide. Procedia Chem. 2016;18:69–74.
  • Rahman SAKM, Kato K, Kawai S, et al. Substrate specificity of the α-L-arabinofuranosidase from Rhizomucor pusillus HHT-1. Carbohydr Res. 2003;338:1469–1476.
  • Lee SH, Lee YE. Cloning, expression, and characterization of a thermostable GH51 α-L-arabinofuranosidase from Paenibacillus sp. DG-22. J Microbiol Biotechnol. 2014;24:236–244.
  • Gasteiger E, Gattiker A, Hoogland C, et al. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucl Acids Res. 2003;31:3784–3788.
  • Tamura K, Dudley J, Nei M, et al. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596–1599.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods. 2001;25:402–408.
  • Melen K, Krogh A, von Heijne G. Reliability measures for membrane protein topology prediction algorithms. J Mol Biol. 2003;327:735–744.
  • Petersen TN, Brunak S, von Heijne G, et al. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–786.
  • Rombouts FM, Voragen AGJ, Searle-van Leeuwen MF, et al. The arabinanases of Aspergillus niger: purification and characterization of two α-Larabinofuranosidases and an endo-1,5-α-L-arabinanase. Carbohydr Polym. 1988;9:25–47.
  • Kaneko S, Arimoto M, Ohba M, et al. Purification and substrate specificities of two α-L-arabinofuranosidases from Aspergillus awamori IFO 4033. Appl Environ Microb. 1998;64:4021–4027.
  • Sakamoto T, Kawasaki H. Purification and properties of two type B α-L-arabinofuranosidases produced by Penicillium chrysogenum. Biochim Biophys Acta. 2003;1621:204–210.