34,851
Views
441
CrossRef citations to date
0
Altmetric
Review; Agriculture and Environmental Biotechnology

Bacillus species as versatile weapons for plant pathogens: a review

, &
Pages 446-459 | Received 29 Apr 2016, Accepted 23 Jan 2017, Published online: 13 Feb 2017

References

  • Pal KK, Gardener BM. Biological control of plant pathogens. Plant Health Instruct. 2006;2:1117–1142.
  • Barr PO, Soila P. Introduction of soft cannula into artery by direct percutaneous puncture. Observations on technique and cannula materials. Angiology. 1960;11:168–172.
  • Cook RJ, Weller DM, El-Banna AY, et al. Yield responses of direct-seeded wheat to rhizobacteria and fungicide seed treatments. Plant Dis. 2002;86(7):780–784.
  • Cook RJ, Baker KF. The nature and practice of biological control of plant pathogens. St. Paul (MN): American Phytopathological Society; 1983.
  • Verschuere L, Rombaut G, Sorgeloos P, et al. Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev. 2000;64(4):655–671.
  • Compant S, Duffy B, Nowak J, et al. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol. 2005;71(9):4951–4959.
  • Denner W, Gillanders T. The legislative aspects of the use of industrial enzymes in the manufacture of food and food ingredients. In: Godfrey T, Reichelt J, editors. Industrial enzymology. New York: Stockton Press; 1996. p. 397–412.
  • Nemutanzhela ME, Roets Y, Gardiner N, et al. The use and benefits of Bacillus based biological agents in aquaculture. In: Hernández-Vergara MP, Pérez-Rostro CI, editors. Sustainable aquaculture techniques. Rijeka (Croatia): INTECH; 2014. p. 33.
  • Cavaglieri L, Orlando J, Etcheverry M. In vitro influence of bacterial mixtures on Fusarium verticillioides growth and fumonisin B1 production: effect of seeds treatment on maize root colonization. Lett Appl Microbiol. 2005;41(5):390–396.
  • Microbiology UDoPa. Antimicrob Pept database. 2016; 18 April. Available from: http://aps.unmc.edu/AP/main.php
  • Zhao X, Zhou Z-j, Han Y, et al. Isolation and identification of antifungal peptides from Bacillus BH072, a novel bacterium isolated from honey. Microbiol Res. 2013;168(9):598–606.
  • Gong A-D, Li H-P, Yuan Q-S, et al. Antagonistic Mechanism of Iturin A and Plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS One. 2015;10(2):e0116871.
  • Maget-Dana R, Ptak M, Peypoux F, et al. Pore-forming properties of iturin A, a lipopeptide antibiotic. Biochim Biophys. 1985;815(3):405–409.
  • Hirata F, Axelrod J. Phospholipid methylation and biological signal transmission. Science. 1980;209(4461):1082–1090.
  • Vadas P, Pruzanski W, Kim J, et al. The proinflammatory effect of intra-articular injection of soluble human and venom phospholipase A2. Am J Med Sci. 1989;134(4):807.
  • Nishikiori T, Naganawa H, Muraoka Y, et al. Plipastatins: new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67. III. Structural elucidation of plipastatins. J Antibiot. 1986;39(6):755–761.
  • Volpon L, Besson FLancelin J-M. NMR structure of antibiotics plipastatins A and B from Bacillus subtilis inhibitors of phospholipase A 2. FEBS Lett. 2000;485(1):76–80.
  • Thasana N, Prapagdee B, Rangkadilok N, et al. Bacillus subtilis SSE4 produces subtulene A, a new lipopeptide antibiotic possessing an unusual C15 unsaturated β-amino acid. FEBS Lett. 2010;584(14):3209–3214.
  • Ohno A, Ano T, Shoda M. Effect of temperature on production of lipopeptide antibiotics, iturin A and surfactin by a dual producer, Bacillus subtilis RB14, in solid-state fermentation. J Ferment Bioeng. 1995;80(5):517–519.
  • YE Y-F, LI Q-Q, Gang F, et al. Identification of antifungal substance (Iturin A 2) produced by Bacillus subtilis B47 and its effect on southern corn leaf blight. J Integr Agric. 2012;11(1):90–99.
  • Xu D, Wang Y, Sun L, et al. Inhibitory activity of a novel antibacterial peptide AMPNT-6 from Bacillus subtilis against Vibrio parahaemolyticus in shrimp. Food Control. 2013;30(1):58–61.
  • Gong Q, Zhang C, Lu F, et al. Identification of bacillomycin D from Bacillus subtilis fmbJ and its inhibition effects against Aspergillus flavus. Food Control. 2014;36(1):8–14.
  • Dunlap CA, Bowman MJ, Schisler DA. Genomic analysis and secondary metabolite production in Bacillus amyloliquefaciens AS 43.3: a biocontrol antagonist of Fusarium head blight. Biol Control. 2013;64(2):166–175.
  • Park J-W, Balaraju K, Kim J-W, et al. Systemic resistance and growth promotion of chili pepper induced by an antibiotic producing Bacillus vallismortis strain BS07. Biol Control. 2013;65(2):246–257.
  • Qi G, Zhu F, Du P, et al. Lipopeptide induces apoptosis in fungal cells by a mitochondria-dependent pathway. Peptides. 2010;31(11):1978–1986.
  • Cao Y, Xu Z, Ling N, et al. Isolation and identification of lipopeptides produced by B. subtilis SQR 9 for suppressing Fusarium wilt of cucumber. Sci Hortic. 2012;135:32–39.
  • Baysal Ö, Çalışkan M Yeşilova Ö. An inhibitory effect of a new Bacillus subtilis strain (EU07) against Fusarium oxysporum f. sp. radicis-lycopersici. Physiol Mol Plant Pathol. 2008;73(1):25–32.
  • Chen H, Wang L, Su C, et al. Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis. Lett Appl Microbiol. 2008;47(3): 180–186.
  • Wu S, Jia S, Sun D, et al. Purification and characterization of two novel antimicrobial peptides subpeptin JM4-A and subpeptin JM4-B produced by Bacillus subtilis JM4. Curr Microbiol. 2005;51(5):292–296.
  • Huang C-J, Wang T-K, Chung S-C, et al. Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. BMB Rep. 2005;38(1):82–88.
  • Liu Y, Chen Z, Ng T, et al. Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides. 2007;28(3):553–559.
  • Li J, Yang Q, Zhao L-H, et al. Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29. J Zhejiang Univ Sci B. 2009;10(4):264–272.
  • Xie J, Zhang R, Shang C, et al. Isolation and characterization of a bacteriocin produced by an isolated Bacillus subtilis LFB112 that exhibits antimicrobial activity against domestic animal pathogens. Afr J Biotechnol. 2009;8(20):5611–5619.
  • Kim PI, Ryu J, Kim YH, et al. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol. 2010;20(1):138–145.
  • Fuchs SW, Jaskolla TW, Bochmann S, et al. Entianin, a novel subtilin-like lantibiotic from Bacillus subtilis subsp. spizizenii DSM 15029T with high antimicrobial activity. Appl Environ Microbiol. 2011;77(5):1698–1707.
  • Yeo I-C, Lee NK, Cha C-J, et al. Narrow antagonistic activity of antimicrobial peptide from Bacillus subtilis SCK-2 against Bacillus cereus. J Biosci Bioeng. 2011;112(4):338–344.
  • Hammami I, Jaouadi B, Bacha AB, et al. Bacillus subtilis bacteriocin Bac 14B with a broad inhibitory spectrum: purification, amino acid sequence analysis, and physicochemical characterization. Biotechnol Bioprocess Eng. 2012;17(1):41–49.
  • Vanittanakom N, Loeffler W, Koch U, et al. Fengycin-A novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot (Tokyo). 1986;39(7):888–901.
  • Abdel‐Mohsein HS, Sasaki T, Tada C, et al. Characterization and partial purification of a bacteriocin‐like substance produced by thermophilic Bacillus licheniformis H1 isolated from cow manure compost. Anim J Sci. 2011;82(2):340–351.
  • Kamoun F, Mejdoub H, Aouissaoui H, et al. Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J Appl Microbiol. 2005;98(4):881–888.
  • Roy A, Mahata D, Paul D, et al. Purification, biochemical characterization and self-assembled structure of a fengycin-like antifungal peptide from Bacillus thuringiensis strain SM1. Front Microbiol. 2013;4:1–6.
  • Serpil U, Kati H. Purification and characterization of the bacteriocin thuricin Bn1 produced by Bacillus thuringiensis subsp. kurstaki Bn1 isolated from a hazelnut pest. J Microbiol Biotechnol. 2013;23(2):167–176.
  • Benitez LB, Velho RV, Lisboa MP, et al. Isolation and characterization of antifungal peptides produced by Bacillus amyloliquefaciens LBM5006. J Microbiol. 2010;48(6):791–797.
  • Halimi B, Dortu C, Arguelles-Arias A, et al. Antilisterial activity on poultry meat of amylolysin, a bacteriocin from Bacillus amyloliquefaciens GA1. Probiotics Antimicrob Proteins. 2010;2(2):120–125.
  • Scholz R, Molohon KJ, Nachtigall J, et al. Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42. J Bacteriol. 2011;193(1):215–224.
  • Kavitha S, Senthilkumar S, Gnanamanickam S, et al. Isolation and partial characterization of antifungal protein from Bacillus polymyxa strain VLB16. Process Biochem. 2005;40(10):3236–3243.
  • Awais M, Shah AA, Hameed A, et al. Isolation, identification and optimization of bacitracin produced by Bacillus sp. Pak J Zool. 2007;39(4):1303.
  • Zhao Z, Wang Q, Wang K, et al. Study of the antifungal activity of Bacillus vallismortis ZZ185 in vitro and identification of its antifungal components. Bioresour Technol. 2010;101(1):292–297.
  • Lawton EM, Cotter PD, Hill C, et al. Identification of a novel two-peptide lantibiotic, haloduracin, produced by the alkaliphile Bacillus halodurans C-125. FEMS Microbiol Lett. 2007;267(1):64–71.
  • Ayed HB, Hmidet N, Béchet M, et al. Identification and biochemical characteristics of lipopeptides from Bacillus mojavensis A21. Process Biochem. 2014;49(10):1699–1707.
  • Chopra L, Singh G, Choudhary V, et al. Sonorensin: an antimicrobial peptide, belonging to the heterocycloanthracin subfamily of bacteriocins, from a new marine isolate, Bacillus sonorensis MT93. Appl Environ Microbiol. 2014;80(10):2981–2990.
  • Riazi S, Wirawan R, Badmaev V, et al. Characterization of lactosporin, a novel antimicrobial protein produced by Bacillus coagulans ATCC 7050. J Appl Microbiol. 2009;106(4):1370–1377.
  • Romero D, de Vicente A, Rakotoaly RH, et al. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant-Microbe Interact. 2007;20(4):430–440.
  • Chen XH, Koumoutsi A, Scholz R, et al. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol. 2007;25(9):1007–1014.
  • Harman GE. Multifunctional fungal plant symbionts: new tools to enhance plant growth and productivity. New Phytol. 2011;189(3):647–649.
  • Chowdappa P, Kumar SM, Lakshmi MJ, et al. Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol Control. 2013;65(1):109–117.
  • Idris EE, Iglesias DJ, Talon M, et al. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant-Microbe Interact. 2007;20(6):619–626.
  • Gravel V, Antoun H, Tweddell RJ. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem. 2007;39(8):1968–1977.
  • Shoresh M, Harman GE, Mastouri F. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol. 2010;48:21–43.
  • Kloepper JW, Ryu C-M, Zhang S. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology. 2004;94(11):1259–1266.
  • Gardner G. Plant hormone signaling. HortScience. 2009;44(1):222–223.
  • Srivastava LM. Plant growth and development: hormones and environment. San Diego (CA): Academic press; 2002.
  • Vessey JK. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 2003;255(2):571–586.
  • Ghanashyam C, Jain M. Role of auxin-responsive genes in biotic stress responses. Plant Signal Behav. 2009;4(9):846–848.
  • Jiang C-H, Wu F, Yu Z-Y, et al. Study on screening and antagonistic mechanisms of Bacillus amyloliquefaciens 54 against bacterial fruit blotch (BFB) caused by Acidovorax avenae subsp. citrulli. Microbiol Res. 2015;170:95–104.
  • Ramesh A, Sharma SK, Sharma MP, et al. Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in vertisols of central India. Appl Soil Ecol. 2014;73:87–96.
  • Hong SH, Lee EY. Vegetation restoration and prevention of coastal sand dunes erosion using ion exchange resins and the plant growth-promoting rhizobacteria Bacillus sp. SH1RP8 isolated from indigenous plants. Int Biodeterior Biodegrad. 2014;95:262–269.
  • Lin Y, Du D, Si C, et al. Potential biocontrol Bacillus sp. strains isolated by an improved method from vinegar waste compost exhibit antibiosis against fungal pathogens and promote growth of cucumbers. Biol Control. 2014;71:7–15.
  • Wei X, Yan P-S, Wu H-Q, et al. Antagonizing Aspergillus parasiticus and promoting peanut growth of Bacillus isolated from peanut geocarposphere soil. J Integr Agric. 2014;13(11):2445–2451.
  • Nain L, Yadav R, Saxena J. Characterization of multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bioinoculant for crops grown in semi arid deserts. Appl Soil Ecol. 2012;59:124–135.
  • López-Valdez F, Fernández-Luqueno F, Ceballos-Ramírez J, et al. A strain of Bacillus subtilis stimulates sunflower growth (Helianthus annuus L.) temporarily. Sci Hortic. 2011;128(4):499–505.
  • Durrant W Dong X. Systemic acquired resistance. Annu Rev Phytopathol. 2004;42:185–209.
  • Van Loon L, Bakker P, Pieterse C. Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol. 1998;36(1):453–483.
  • Van Wees SC, Van der Ent S, Pieterse CM. Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol. 2008;11(4):443–448.
  • Park K, Paul D, Kim YK, et al. Induced systemic resistance by Bacillus vallismortis EXTN-1 suppressed bacterial wilt in tomato caused by Ralstonia solanacearum. Plant Pathol J. 2007;23(1):22.
  • Park K, Ahn I-P, Kim C-H. Systemic resistance and expression of the pathogenesis-related genes mediated by the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens EXTN-1 against anthracnose disease in cucumber. Mycobiology. 2001;29(1):48–53.
  • Akram W, Anjum T. Quantitative changes in defense system of tomato induced by two strains of Bacillus against Fusarium wilt. Indian J Fund Appl Life Sci. 2011;1:7–13.
  • Gupta V, Bochow H, Dolej S, et al. Ein das Pflanzenwachstum fördernder Bacillus subtilis-Stamm als potentieller Resistenzinduktor gegen die Fusarium-Welke an Tomaten [Plant growth-promoting Bacillus subtilis strain as potential inducer of systemic resistance in tomato against Fusarium wilt]. J Plant Dis Prot. 2000;145–154.
  • Jayaraj J, Anand A, Muthukrishnan S. Pathogenesis-related proteins and their roles in resistance to fungal pathogens. In: Punja ZK, editor. Fungal disease resistance in pants: biochemistry, molecular biology, and genetic engineering. New York: Haworth Press. 2004; p. 139–177.
  • Wang X, Wang L, Wang J, et al. Bacillus cereus AR156-induced resistance to Colletotrichum acutatum is associated with priming of defense responses in loquat fruit. PloS One. 2014;9(11):e112494.
  • Ahn I-P, Park K, Kim C-H. Rhizobacteria-induced resistance perturbs viral disease progress and triggers defense-related gene expression. Mol Cells. 2002;13(2):302–308.
  • Guo J-H, Qi H-Y, Guo Y-H, et al. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biol Control. 2004;29(1):66–72.
  • Benhamou N, Kloepper JW, Quadt-Hallman A, et al. Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol. 1996;112(3):919–929.
  • Benhamou N, Kloepper JW, Tuzun S. Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta. 1998;204(2):153–168.
  • Lee BD, Dutta S, Ryu H, et al. Induction of systemic resistance in Panax ginseng against Phytophthora cactorum by native Bacillus amyloliquefaciens HK34. J Ginseng Res. 2015;39(3):213–220.
  • Jetiyanon K, Fowler WD, Kloepper JW. Broad-spectrum protection against several pathogens by PGPR mixtures under field conditions in Thailand. Plant Dis. 2003;87(11):1390–1394.
  • Van Loon L, Bakker P. Induced systemic resistance as a mechanism of disease suppression by rhizobacteria, in PGPR: biocontrol and biofertilization. Dordrecht (Netherlands): Springer; 2006. p. 39–66.
  • Hasky-Günther K, Hoffmann-Hergarten S, Sikora RA. Resistance against the potato cyst nematode Globodera pallida systemically induced by the rhizobacteria Agrobacterium radiobacter (G12) and Bacillus sphaericus (B43). Fundam Appl Nematol. 1998;21(5):511–517.
  • Zhang S, Moyne A-L, Reddy M, et al. The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol Control. 2002;25(3):288–296.
  • Ryu C-M, Farag MA, Hu C-H, et al. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 2004;134(3):1017–1026.
  • Ryu CM, Hu CH, Reddy M, et al. Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytol. 2003;160(2):413–420.
  • Leelasuphakul W, Sivanunsakul P, Phongpaichit S. Purification, characterization and synergistic activity of β-1,3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight. Enzyme Microb Technol. 2006;38(7):990–997.
  • Jayaraj J, Yi H, Liang G, et al. Blattapplikation von Bacillus subtilis AUBS1 reduziert die Blattscheidendürre und induziert Abwehrmechanismen in Reis [Foliar application of Bacillus subtilis AUBS1 reduces sheath blight and triggers defense mechanisms in rice]. J Plant Dis Prot. 2004;111(2):115–125.
  • Thilagavathi R, Saravanakumar D, Ragupathi N, et al. A combination of biocontrol agents improves the management of dry root rot (Macrophomina phaseolina) in greengram. Phytopathol Mediterr. 2007;46(2):157–167.
  • Sailaja P, Podile A, Reddanna P. Biocontrol strain of Bacillus subtilis AF 1 rapidly induces lipoxygenase in groundnut (Arachis hypogaea L.) compared to crown rot pathogen Aspergillus niger. Eur J Plant Pathol. 1998;104(2):125–132.
  • Arfaoui A, El Hadrami A, Mabrouk Y, et al. Treatment of chickpea with Rhizobium isolates enhances the expression of phenylpropanoid defense-related genes in response to infection by Fusarium oxysporum f. sp. ciceris. Plant Physiol Biochem. 2007;45(6):470–479.
  • Kang Z, Buchenauer H. Ultrastructural and immunocytochemical investigation of pathogen development and host responses in resistant and susceptible wheat spikes infected by Fusarium culmorum. Physiol Mol Plant Pathol. 2000;57(6):255–268.
  • Hahlbrock K, Scheel D. Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Biol. 1989;40(1):347–369.
  • Li L, Steffens JC. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta. 2002;215(2):239–247.
  • Thipyapong P, Steffens JC. Tomato polyphenol oxidase (differential response of the polyphenol oxidase F promoter to injuries and wound signals). Plant Physiol. 1997;115(2):409–418.
  • Francis I, Holsters M, Vereecke D. The Gram‐positive side of plant–microbe interactions. Environ Microbiol. 2010;12(1):1–12.
  • Vidhyasekaran P, Kamala N, Ramanathan A, et al. Induction of systemic resistance by Pseudomonas fluorescens Pf1 against Xanthomonas oryzae pv. Oryzae in rice leaves. Phytoparasitica. 2001;29(2):155–166.
  • Ramyabharathi S, Meena B, Raguchander T. Induction of chitinase and β-1,3-glucanase PR proteins in tomato through liquid formulated Bacillus subtilis EPCO 16 against Fusarium wilt. J Today Biol Sci: Res Rev. 2012;1(1):50–60.
  • Das SN, Dutta S, Kondreddy A, et al. Plant growth-promoting chitinolytic Paenibacillus elgii responds positively to tobacco root exudates. J Plant Growth Regul. 2010;29(4):409–418.
  • Podile A, Prakash A. Lysis and biological control of Aspergillus niger by Bacillus subtilis AF 1. Can J Microbiol. 1996;42(6):533–538.
  • Kishore G, Pande S. Chitin‐supplemented foliar application of chitinolytic Bacillus cereus reduces severity of Botrytis gray mold disease in chickpea under controlled conditions. Lett Appl Microbiol. 2007;44(1):98–105.
  • Huang X, Lu Z, Bie X, et al. Optimization of inactivation of endospores of Bacillus cereus by antimicrobial lipopeptides from Bacillus subtilis fmbj strains using a response surface method. Appl Microbiol Biotechnol. 2007;74(2):454–461.
  • Wang J, Liu J, Wang X, et al. Application of electrospray ionization mass spectrometry in rapid typing of fengycin homologues produced by Bacillus subtilis. Lett Appl Microbiol. 2004;39(1):98–102.
  • Chang X, Alderson PG, Wright CJ. Enhanced UV-B radiation alters basil (Ocimum basilicum L.) growth and stimulates the synthesis of volatile oils. J Hortic For. 2009;1(2):027–031.
  • Liu X-Y, Ruan L-F, Hu Z-F, et al. Genome-wide screening reveals the genetic determinants of an antibiotic insecticide in Bacillus thuringiensis. J Biol Chem. 2010;285(50):39191–39200.
  • Bargabus R, Zidack N, Sherwood J, et al. Characterisation of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol Mol Plant Pathol. 2002;61(5):289–298.
  • Hart AC, Sims S, Kaplan JM. Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor. Nature. 1995;378(6552):82–85.
  • Watanabe Y, Yamaguchi M, Sakamoto J, et al. Characterization of plasma membrane H+‐ATPase from salt‐tolerant yeast Candida versatilis. Yeast. 1993;9(3):213–220.
  • Ruiz-Sánchez R, Blake R, Castro-Gámez H, et al. Short communication: changes in the association between milk yield and age at first calving in Holstein cows with herd environment level for milk yield. J Dairy Sci. 2007;90(10):4830–4834.
  • Zhang F, Dashti N, Hynes R, et al. Plant growth-promoting rhizobacteria and soybean [Glycine max (L.) Merr.] growth and physiology at suboptimal root zone temperatures. Ann Bot. 1997; 79(3):243–249.
  • Hoang L, Song KS, Rhee IK, et al. Mechanism by which Bacillus-derived 2-aminobenzoic acid inhibits the growth of Arabidopsis thaliana roots. J. Plant Biol. 2007;50(4):514–516.
  • Hoseki J, Yano T, Koyama Y, et al. Directed evolution of thermostable kanamycin-resistance gene: a convenient selection marker for Thermus thermophilus. J Biochem. 1999;126(5):951–956.
  • Shiau R-J, Hung H-C, Jeang C-L. Improving the thermostability of raw-starch-digesting amylase from a Cytophaga sp. by site-directed mutagenesis. Appl Environ Microbiol. 2003;69(4):2383–2385.
  • Guedon E, Desvaux M, Petitdemange H. Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl Environ Microbiol. 2002;68(1):53–58.
  • Kim KK, Kang JG, Moon SS, et al. Isolation and identification of antifungal N-butylbenzenesulphonamide produced by Pseudomonas sp. AB2. J Antibiot (Tokyo). 2000;53(2):131–136.
  • Terahara T, Ikeda S, Noritake C, et al. Molecular diversity of bacterial chitinases in arable soils and the effects of environmental factors on the chitinolytic bacterial community. Soil Biol Biochem. 2009;41(3):473–480.
  • Kwon YS, Ryu C-M, Lee S, et al. Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta. 2010;232(6):1355–1370.
  • Trotel-Aziz P, Couderchet M, Biagianti S, et al. Characterization of new bacterial biocontrol agents Acinetobacter, Bacillus, Pantoea and Pseudomonas spp. mediating grapevine resistance against Botrytis cinerea. Environ Exp Bot. 2008;64(1):21–32.
  • Park K, Park J-W, Lee S-W, et al. Disease suppression and growth promotion in cucumbers induced by integrating PGPR agent Bacillus subtilis strain B4 and chemical elicitor ASM. Crop Protect. 2013;54:199–205.
  • Chandler S, Van Hese N, Coutte F, et al. Role of cyclic lipopeptides produced by Bacillus subtilis in mounting induced immunity in rice (Oryza sativa L.). Physiol Mol Plant Pathol. 2015;91:20–30.
  • Latha P, Anand T, Ragupathi N, et al. Antimicrobial activity of plant extracts and induction of systemic resistance in tomato plants by mixtures of PGPR strains and Zimmu leaf extract against Alternaria solani. Biol Control. 2009;50(2):85–93.
  • Udayashankar A, Nayaka SC, Reddy M, et al. Plant growth-promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biol Control. 2011;59(2):114–122.
  • Cavaglieri L, Orlando J, Rodriguez M, et al. Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Res Microbiol. 2005;156(5):748–754.
  • Song M, Yun HY, Kim YH. Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum. J Ginseng Res. 2014;38(2):136–145.
  • Li S, Zhang N, Zhang Z, et al. Antagonist Bacillus subtilis HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation. Biol Fertil Soils. 2013;49(3):295–303.
  • Cao Y, Zhang Z, Ling N, et al. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol Fertil Soils. 2011;47(5):495–506.
  • Liu J, He D, Li X-z, et al. γ-Polyglutamic acid (γ-PGA) produced by Bacillus amyloliquefaciens C06 promoting its colonization on fruit surface. Int J Food Microbiol. 2010;142(1):190–197.
  • Zhang N, Wu K, He X, et al. A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11. Plant Soil. 2011;344(1–2):87–97.
  • Demoz BT, Korsten L. Bacillus subtilis attachment, colonization, and survival on avocado flowers and its mode of action on stem-end rot pathogens. Biol Control. 2006;37(1):68–74.
  • Ongena M, Duby F, Rossignol F, et al. Stimulation of the lipoxygenase pathway is associated with systemic resistance induced in bean by a nonpathogenic Pseudomonas strain. Mol Plant-Microbe Interact. 2004;17(9):1009–1018.
  • Clayton MK, Hudelson BD. Analysis of spatial patterns in the phyllosphere. In: Andrews JH, Hirano SS, editors. Microbial ecology of leaves. New York: Springer; 1991. p. 111–131.
  • Baker CJ, Stavely J, Thomas C, et al. Inhibitory effect of Bacillus subtilis on Uromyces phaseoli and on development of rust pustules on bean leaves. Phytopathology. 1983;73(8):1148–1152.
  • Nautiyal CS, Srivastava S, Chauhan PS, et al. Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem. 2013;66:1–9.
  • Tong-Jian X, Fang C, Chao G, et al. Bacillus cereus X5 enhanced bio-organic fertilizers effectively control root-knot nematodes (Meloidogyne sp.). Pedosphere. 2013;23(2):160–168.
  • Ji X, Lu G, Gai Y, et al. Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS Microbiol Ecol. 2008;65(3):565–573.
  • Hu X, Roberts DP, Xie L, et al. Bacillus megaterium A6 suppresses Sclerotinia sclerotiorum on oilseed rape in the field and promotes oilseed rape growth. Crop Protect. 2013;52:151–158.
  • Kinsella K, Schulthess CP, Morris TF, et al. Rapid quantification of Bacillus subtilis antibiotics in the rhizosphere. Soil Biol Biochem. 2009;41(2):374–379.
  • Zheng X, Sinclair J. The effects of traits of Bacillus megaterium onseed and root colonization and their correlation with the suppression of Rhizoctonia root rot of soybean. BioControl. 2000;45(2):223–243.
  • Paul Chowdhury S, Uhl J, Grosch R, et al. Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defence responses towards the bottom rot pathogen Rhizoctonia solani. Mol Plant-Microbe Interact. 2015;28(9):984–995.
  • Blagoeva-Nikolaeva V, Slavov S, Varsano L. Possibilities for biological control of black-shank disease in tobacco with Bacillus cereus. Biotechnol Biotechnol Equip. 1995;9(1):36–39.