1,258
Views
1
CrossRef citations to date
0
Altmetric
Article; Food Biotechnology

Cloning, expression and characterization of an aspartate aminotransferase gene from Lactobacillus brevis CGMCC 1306

, , , , , , & show all
Pages 544-553 | Received 25 Aug 2016, Accepted 06 Mar 2017, Published online: 21 Mar 2017

References

  • Toney MD. Aspartate aminotransferase: an old dog teaches new tricks. Arch Biochem Biophys. 2014;544:1345–1351.
  • Hammes GG, Benkovic SJ, Hammes-Schiffer S. Flexibility, diversity, and cooperativity: pillars of enzyme catalysis. Biochemistry. 2011;50:10422–10430.
  • de la Torre F, De Santis L, Suarez MF, et al. Identification and functional analysis of a prokaryotic-type aspartate aminotransferase: implications for plant amino acid metabolism. Plant J. 2006;46:414–425.
  • de la Torre F, Cañas RA, Pascual MB, et al. Plastidic aspartate aminotransferases and the biosynthesis of essential amino acids in plants. J Exp Bot. 2014;65:5527–5534.
  • Ward J, Wohgemuth R. High-yield biocatalytic amination reactions in organic synthesis. Curr Org Chem. 2010;14:1914–1927.
  • Ford GC, Eichele G, Jansonius JN. Three-dimensional structure of a pyridoxal- phosphate-dependent enzyme, mitochondrial aspartate aminotransferase. Proc Natl Acad Sci USA. 1980;77:2559–2263.
  • Jäger J, Moser M, Sauder U, et al. Crystal structures of Escherichia coli aspartate aminotransferase in two conformations: comparison of an unliganded open and two liganded closed forms. J Mol Biol. 1994;239:285–305.
  • Jeffery CJ, Barry T, Doonan S, et al. Crystal structure of Saccharomyces cerevisiae cytosolic aspartate aminotransferase. Protein Sci. 1998;7:1380–1387.
  • Jiang XP, Wang J, Chang HY, et al. Recombinant expression, purification and crystallographic studies of the mature form of human mitochondrial aspartate aminotransferase. Biosci Trends. 2016;10:79–84.
  • Rhee S, Silva MM, Hyde CC, et al. Refinement and comparisons of the crystal structures of pig cytosolic aspartate aminotransferase and its complex with 2-methylaspartate. J Biol Chem. 1997;272:17293–17302.
  • de la Torre F, Moya-García AA, Suárez M, et al. Molecular modeling and site-directed mutagenesis reveal essential residues for catalysis in a prokaryote-type aspartate aminotransferase. Plant Physiol. 2009;149:1648–1460.
  • Fernández M, Zúñiga M. Amino acid catabolic pathways of lactic acid bacteria. Critical reviews in microbiology. Crit Rev Microb. 2006;32:155–183.
  • Huang J, Mei LH, Xia J. Application of artificial neural network coupling particle swarm optimization algorithm to biocatalytic production of GABA. Biotechnol Bioeng. 2007;96:924–931.
  • Fan EY, Huang J, Hu S, et al. Cloning, sequencing and expression of a glutamate decarboxylase gene from the GABA-producing strain Lactobacillus brevis CGMCC 1306. Ann Microbiol. 2012;62:689–698.
  • Makarovaa K, Slesarevb A, Wolfa Y, et al. Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA. 2006;103:15611–15616.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.
  • Collier RH, Kohlhaw G. Nonidentity of the aspartate and the aromatic aminotransferase components of transaminase A in Escherichia coli. J Bacteriol. 1972;112:365–371.
  • Chen XX, Li D, Lv JX, et al. Determination of gamma-aminobutyric acid and glutamic acid in human cerebrospinal fluid by high performance liquid chromatography. Chin J Chromatogr. 1997;15:237–239.
  • Yagi T, Kagamiyama H, Nozaki M, et al. Glutamate-aspartate transaminase from microorganisms. Methods Enzymol. 1985;113:83–89.
  • Arnold K, Bordoli L, Kopp J, et al. The Swiss-model workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22:195–201.
  • Biasini M, Bienert S, Waterhouse A, et al. Swiss-model: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014;42:252–258.
  • Kim H, Ikegami K, Nakaoka M, et al. Characterization of aspartate aminotransferase from the cyanobacterium Phormidium lapideum. Biosci Biotechnol Biochem. 2003;67:490–498.
  • Burstein EA, Vedenkina NS, Ivkova MN. Fluorescence and the location of tryptophan residues in protein molecules. Photochem Photobiol. 1973;18:263–279.
  • Huang J, Jones BJ, Kazlauskas RJ. Stabilization of an α/β-hydrolase by introducing proline residues: salicylic acid binding protein 2 from tobacco. Biochemistry. 2015;54:4330–4341.
  • Geourjon C, Deléage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Cabios. 1989;11:681–684.
  • Madhusudhan MS, Marti-Renom MA, Eswar N, et al. Comparative protein structure modeling. Encyclopedia Biophysics. 2010;15:578–585.
  • Benkert P, Kunzli M, Schwede T. QMEAN server for protein model quality estimation. Nucleic Acids Res. 2009;37:510–514.
  • Birolo L, Tutino ML, Fontanella B, et al. Aspartate aminotransferase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC 125. Cloning, expression, properties, and molecular modelling. Eur J Biochem. 2000;267:2790–2802.
  • Xing RY, Whitman WB. Characterization of amino acid aminotransferases of Methanococcus aeolicus. J Biotech. 1992;174:541–548.
  • Sung M, Tanizawa K, Tanaka H, et al. Purification and characterization of thermostable aspartate aminotransferase from a Thermophilic bacillus species. J Biotechnol. 1990;172:1345–1351.