7,459
Views
24
CrossRef citations to date
0
Altmetric
Review; Agriculture and Environmental Biotechnology

Enzymatic breakdown of lignocellulosic biomass: the role of glycosyl hydrolases and lytic polysaccharide monooxygenases

, , & ORCID Icon
Pages 647-662 | Received 05 Mar 2017, Accepted 10 May 2017, Published online: 16 May 2017

References

  • Mtui G, Nakamura Y. Bioconversion of lignocellulosic waste from selected dumping sites in Dares Salaam, Tanzania. Biodegradation. 2005;16(6):493–499.
  • Singh S, Moholkar VS, Goyal A. Isolation, identification, and characterization of a cellulolytic Bacillus amyloliquefaciens Strain SS3S from Rhinocerus dung. ISRN Microbiol. 2013 [ cited 2017 Apr 3]; Article ID 728134. DOI:10.1155/2013/728134.
  • Demain A, Newcomb M, Wu JHD. Cellulase, Clostridia and ethanol. Microbiol Mol Biol R. 2005;69(1):124–154.
  • Lynd LR, Jin H, Michels JG, et al. Bioenergy: background, potential and policy. A policy briefing prepared for the Centre for Strategic and International Studies. Washington (DC): Centre for Strategic and International Studies; 2003.
  • Kumar A, Gautam A, Dutt D. Biotechnological transformation of lignocellulosic biomass in to industrial products: an overview. Adv Biosci Biotechnol. 2016;7:149–168.
  • Kumar P, Barrett DM, Delwiche MJ, et al. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res. 2009;48(8):3713–3729.
  • Wang H, Squina F, Segato F, et al. High temperature enzymatic breakdown of cellulose. Appl Environ Microb. 2011;77(15):5199–5206.
  • Himmel ME, Ding SY, Johnson DY, et al. Biomass recalcitrance: engineering plants and enzymes for biofuel production. Science. 2007;315(5813):804–807.
  • Wolfenden R, Lu X, Young G. Spontaneous hydrolysis of glycosides. J Am Chem Soc. 1998;120:6814–6815.
  • Wahlstrom R, Rovio S, Suurnakki A. Partial enzymatic hydrolysis of microcrystalline cellulose ionic liquids by Trichderma reesei endoglucanases. RSC Adv. 2012;2:4472–4480.
  • Golan AE. Cellulase: types and action, mechanism, and uses. New York (NY): Nova Science Publishers; 2011.
  • Wahlstrom R. Enzymatic hydrolysis of cellulose in aqueous ionic liquids [dissertation]. Espoo: Aalto University School of Chemical Technology; 2004.
  • Lynd LR, Weimer PJ, van Zyl WH, et al. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002;66:506–577.
  • Elwyn TR, Ralph GHS, Hillel SL. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol. 1950;59:485–497.
  • Zhang YH, Lynd LR. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng. 2004;88:797–824.
  • Medie FM, Davies GJ, Drancourt M. Genome analyses highlight the different biological roles of cellulases. Nat Microbiol. 2012;10:227–234.
  • Shewale JG. Glucosidases: its role in cellulase synthesis and hydrolysis of cellulose. Int J Biochem. 1982;14(16):435–443.
  • Woodward J, Wiseman A. Fungal and other β-D-glucosidases: their properties and applications. Enz Microbiol Technol. 1983;4(2):73–79.
  • Saini JK, Saini R, Tewari L. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol productions concepts and recent developments. 3 Biotech. 2014;5(4):337–353.
  • Xiros C, Topakas E, Christakopoulos P. Hydrolysis and fermentation for cellulosic ethanol production. In: Lund DE, Byrne J, Berndes G, Vasalos LA, editors. Advances in bioenergy: the sustainability challenge. New York (NY): Wiley; 2016. p. 11–31.
  • Gilbert HJ, Hazlewood GP. Bacterial cellulases and xylanases. J Gen Microbiol. 1993;139:187–194.
  • Payne CM, Bomble YJ, Taylor CB, et al. Multiple functions of aromatic-carbohydrate interactions in a processive cellulase examined with molecular simulation. J Biol Chem. 2011;286(47):41028–41035.
  • Taylor CB, Payne CM, Himmel ME. Binding site dynamics and aromatic–carbohydrate interactions in processive and non-processive family 7 glycoside hydrolases. J Biol Chem. 2014;117:4924–4933.
  • Beeson WT, Vu VV, Span EA, et al. Cellulose degradation by polysaccharide monooxygenases. Annu Rev Biochem. 2015;84:923–946.
  • Lehninger A, Nelson DL, Cox M. Principles of biochemistry. 3rd ed. New York (NY): Worth Publishers; 2003.
  • Henrissat BA. Classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991;280(Pt2):309–316.
  • Henrissat B, Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1993;293(Pt2):781–788.
  • Cantarel BL, Coutinho PM, Rancurei C, et al. The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 2009;37:D233–238.
  • Lombard V, Golaconda RH, Drula E, et al. The carbohydrate-active enzyme database (CAZy) in 2013. Nucleic Acid Res. 2014;42:D490–D495.
  • Sathya A, Khan M. Diversity of glycosyl hydrolase enzymes from metagenome and their application in food industry. J Food Sci. 2014;79(11):2149–2156.
  • Bornscheuer U, Buchholz K, Seibel J. Enzymatic degradation of (lingo)cellulose. J Gesellschaft Deutscher Chemiker. 2014;53(41):10876–10893.
  • Boraston AB, Bolan DN, Gilbert HJ, et al. Carbohydrate-binding odules: fine-tuning polysaccharide recognition. Biochem J. 2004;382(3):769–781.
  • McLean BW, Bray MR, Boraston AB, et al. Analysis of binding of the family 2a carbohydrate-binding module from Cellulomonas fimi xylanase 10A to cellulose: specificity and identification of functionally important amino acid residues. Protein Eng. 2000;13:801–809.
  • Boraston AB, Revett TJ, Boraston CM, et al. Structural and thermodynamic dissection of specific mannan recognition by a carbohydrate binding module, TmCBM27. Structure. 2003;11:665–675.
  • Notenboom V, Boraston AB, Chiu P, et al. Recognition of cello-oligosaccharides by a family 17 carbohydrate-binding module: an X-ray crystallographic, thermodynamic and mutagenic study. J Mol Biol. 2001;314:797–806.
  • Creagh AL, Ong E, Jervis E, et al. Binding of the cellulose-binding domain of exoglucanase Cex from Cellulomonas fimi to insoluble microcrystalline cellulose is entropically driven. Proc Natl Acad Sci USA. 1996;93:12229–12234.
  • Najmudin BA, Pinheiro JA, Prates HJ, et al. Putting an N-terminal end to the Clostridium thermocellum xylanase Xyn10B story: crystal structure of the CBM22–1–GH10 modules complexed with xylohexaose. J Struct Biol. 2010;72:353–362.
  • Inoue H, Kishishita S, Kumagai A, et al. Contribution of a family 1 carbohydrate-binding module in a thermostable glycoside hydrolase 10 xylanase from Talaromyces cellulolyticus toward synergistic enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels. 2015 [ cited 2017 May 3];8:77. DOI:10.1186/s130–015–0259–2.
  • Jager G, Girfoglio M, Dollo F, et al. How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis. Biotechnol Biofuels. 2011 [ cited 2017 May 3];4:33. DOI:10.1186/1754–6834–433.
  • Arantes V, Saddler JN. Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels. 2010 [ cited 2017 May 3];3:4. DOI:10.1186/1754–6834–3–4.
  • Ting CL, Makarov DE, Wang ZG. A kinetic model for the enzymatic action of cellulase. J Phys Chem. 2009;13(14):4970–4977.
  • Payne CM, Resch MG, Chen L, et al. Glycosylated likers in multi modular ligno cellulose-degrading enzymes dynamically bind to cellulose. Proc Natl Acad Sci USA. 2013;110:14646–14651.
  • Bayer EA, Kenig R, Lamed RJ. Adherence of Clostridium thermocellum to cellulose. Bacteriology. 1983;156:818–827.
  • Blumer-Schuette SE, Brown SD, Sander KB, et al. Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev. 2014;38:393–448.
  • Zhou F, Olman V, Xu Y. Large-scale analyses of glycosylation in cellulases. Genomics Proteomics Bioinformatics. 2009;7(4):194–199.
  • Fontes CM, Gilbert HJ. Cellulosomes: highly efficient nanomaches designed to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem. 2010;79:665–681.
  • Bayer EA, Belaich J, Shoham Y, et al. The cellulosomes: multienzyme machines for degradation of plant cell wall Polysaccharides. Annu Rev Microbiol. 2004;58:521–554.
  • Noach I, Levy-Assaraf M, Lamed R, et al. Modular arrangement of a cellulosomal scaffoldin subunit revealed from the crystal structure of a cohesin dyad. J Mol Biol. 2010;399:294–305.
  • Hamberg Y, Ruimy-Isreali V, Dassa B, et al. Elaborate cellulosome architecture of Acetivibrio cellulolyticus revealed by selective screening of cohesion-dockerin interactions. Peer J. 2014 [ cited 2017 May 3];2:e636. DOI:10.7717/peerj.636.
  • Gefen G, Anbar M, Morag E, et al. Enhanced cellulose degradation by targeted integration of a cohesin-fused β-glucosidase into the Clostridium thermocellum cellulosome. Proc Natl Acad Sci USA. 2012;109:10298–10303.
  • Mori Y, Ozasa S, Kitaoka M, et al. Aligning an endoglucanase Cel5A from Thermobifida fusca on a DNA scaffold: potent design of an artificial cellulosome. Chem Commun. 2013;49:6971–6973.
  • Himmel ME, Karplus PA, Sakon J, et al. Polysaccharide hydrolase folds diversity of structure and convergence of function. Appl Biochem Biotechnol. 1997;63–65:315–325.
  • Yang B, Dai Z, Ding SY, et al. Enzymatic hydrolysis of cellulosic biomass. Biofuels. 2011;2(4):421–450.
  • Ganner T, Bubner P, Eibinger M, et al. Dissecting and reconstructing synergism in situ visualization of cooperativity among cellulases. J Biol Chem. 2012;287:43215–43222.
  • Bubner P, Plank H, Nidetzky B. Visualizing cellulase activity. Biotechnol Bioeng. 2013;110:1529–1549.
  • Sturcova A, His I, Apperley DC, et al. Structural details of crystalline cellulose from higher plants. Biomacromolecules. 2004;5:1333–1339.
  • Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev. 2010;110(6):3479–3500.
  • Fox JM, Jess P, Jambusaria RB, et al. A single-molecule analysis reveals morphological targets for cellulase synergy. Nat Chem Biol. 2013;9:356–361.
  • Luterbacher JS, Walker LP, Moran-Mirabal JM. Observing and modeling BMCC degradation by commercial cellulase cocktails with fluorescently labeled Trichoderma reesei Cel7A through confocal microscopy. Biotechnol Bioeng. 2013;110:108–117.
  • Luterbacher JS, Parlange JY, Walker LP. A pore-hindered diffusion and reaction model can help explain the importance of pore size distribution in enzymatic hydrolysis of biomass. Biotechnol Bioeng. 2013;110:127–136.
  • Coughlan MP, Ljungdahl LG. Comparative biochemistry of fungal and bacterial cellulolytic enzyme system. In: Aubert, JP, Beguin P, Millet J, editors. FEMS Symposium: Biochemistry and Genetics of Cellulose Degradation. London: Academic Press; 1988. p. 11–30.
  • Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Biores Technol. 2002;83:1–11.
  • Elkins JG, Ramen B, Keller M. Engineered microbial systems for enhanced conversion of lignocellulosic biomass. Curr Opin Biotechnol. 2010;21(5):657–662.
  • Bayer EA, Chanzy H, Lamed R, et al. Cellulose, cellulases and cellulosomes. Current Opin Struct Biol. 1998;8(5):548–557.
  • Chanzy H, Henrissat B, Vuong R. Colloidal gold labeling of 1,4-β-D-glucan cellobiohydrolase adsorbed on cellulose substrates. FEBS Lett. 1984;172:193–197.
  • Harvey AJ, Hrmova M, De Gori R, et al. Comparative modeling of the three-dimensional structures of family 3 glycoside hydrolases. Proteins. 2000;41(2):257–269.
  • Xiao WP, Clarkson WW. Acid solubilization of lignin and bioconversion of treated newsprint to methane. Biodegradation. 1997;8:61–66.
  • Hamelinck CN, van Hooijdonk G, Faaij APC. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenerg. 2005;28:384–410.
  • Pan X, Xie D, Kang KY, et al. Effect of organosolv ethanol pretreatment variables on physical characteristics of hybrid poplar substrates. Appl Biochem Biotechnol. 2007;137:367–377.
  • Lee JW, Gwak KS, Park JY, et al. Biological pretreatment of softwood Pinus densiflora by three white rot fungi. J Microbiol. 2007;45:485–491.
  • Mansfield SD, Mooney C, Saddler JN. Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Progr. 1999;15:804–816.
  • Cheng G, Varanasi P, Li CL, et al. Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules. 2011;12:933–941.
  • Bhat MK. Cellulases and related enzymes in biotechnology. Biotechnol Adv. 2000;18:355–383.
  • Zhang MJ, Su RX, Qi W, et al. Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes. Appl Biochem Biotechnol. 2010;160:1407–1414.
  • Hrmova A, MacGregor EA, Biely P, et al. Substrate binding and catalytic mechanism of a barley β-D-glucosidase/(1,4) –β–D–glucan exohydrolase. J Biol Chem. 1998;273:11134–11143.
  • Alvira P, Tomas-Pejo E, Ballesteros M, et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol. 2010;101(13):4851–4861.
  • Chitlaru E, Roseman S. Molecular cloning and characterization of a novel beta-N-acetylglucosaminidase from Vibrio furnissii. J Biol Chem. 1998;271(52):33433–33439.
  • Fincher G, Mark B, Brumer H. Glycoside hydrolase family 3 [Internet]. In: Henrissat B, editor. CAZypedia. [ cited 2017 May 4]. Available from: http://www.cazypedia.org/
  • Davies GJ, Wison KS, Henrissat B. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J. 1997;321(Pt2):557–559.
  • Pozzo T, Pasten JL, Karlsson EN, et al. Structural and functional analyses of beta-glucosidase 3B from Thermotoga neapolitana: a thermostable three-domain representative of glycoside hydrolase 3. J Mol Biol. 2010;397(3):724–739.
  • Paal K, Ito M, Withers SG. Paenibacillus sp. Ts12 glucosylceramidase: kinetic studies of a novel sub-family of family glycosidases and identification of the catalytic residues. Biochem J. 2004;378:141–149.
  • Bause E, Legler G. Isolation and amino acid sequence of a hexadocapeptide from the active site of beta-glucosidaseA3 from Aspergilllus wentii. Hoppe-Seyler's Z Physiol Chem. 1974;355(4):438–442.
  • Chir J, Withers S, Wan CF, et al. Identification of the two essential groups in the family 3 beta-glucosidase from Flavobacterium meningosepticum by labeling and tandem mass spectrometric analysis. Biochem J. 2002;365(Pt 3):857–863.
  • Dan S, Marton I, Dekel M, et al. Cloning, expression, characterization and nucleophile identification of family 3 Aspergillus niger beta-glucosidase. J Biol Chem. 2000;275(7):4973–4980.
  • Thongpoo P, Mckee LS, Araujo AC, et al. Identification of the acid/base catalyst of a glycoside hydrolase family 3 (GH3) beta-glucosidase from Aspergillus niger ASKU28. Biochim Biophys Acta. 2013;1830(3):2739–2749.
  • Lee RC, Hrmova M, Burton RA, et al. Bifunctional family 3 glycoside hydrolases from barley with alpha-L-arabinofuranosidase and beta-D-xylosidase activity, characterization, primary structures and CooH-terminal processing. J Biol Chem. 2003;278(7):5377–5387.
  • Bacik JP, Whitworth GE, Stubbs KA, et al. Active site plasticity within the glycoside hydrolase NagZ underlies a dynamic mechanism of substrate distortion. Chem Biol. 2012;19:1471–1482.
  • Stubbs KA, Balcewich M, Mark BL, et al. Small molecule inhibitors of a glycoside hydrolase attenuate inducible Amp C-mediated beta-lactam resistance. J Biol Chem. 2007;284(29):21382–21391.
  • Vocadlo DJ, Withers SG. Detailed comparative analysis of the catalytic mechanisms of beta-N-acetyglucosaminidases from families 3 and 20 of glycoside hydrolase. Biochemistry. 2005;44(38):12809–12818.
  • Litzinger S, Duckworth A, Nitzsche K, et al. Muropeptide rescue in Bacillus subtilis involves sequential hydrolysis by beta-N-acetylglucosaminidase and N-acetyl-muranyl-L-alanine amidase. J Bacteriol. 2010;192(12):3132–3143.
  • Aspeborg H, Coutinho PM, Wang Y, et al. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol. 2012 [ cited 2017 May 3]. DOI:10.1186/1471–2148–12–186.
  • Wilson DB, Urbanowicz B. Glycoside hydrolase family 9. In: Wilson DB, editor. CAZypedia. [ cited 2017 May 4]. Available from: http://www.cazypedia.org/
  • Py B, Bortoli-German I, Haiech J, et al. Cellulase EGZ of Erwinia chrysanthemi, structural organization and importance of His-98 abd Glu-133 residues for catalysis. Protein Eng. 1991;4:325–333.
  • Sakon J, Irwin D, Wilson DB, et al. Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nat Struct Biol. 1997;44:810–818.
  • Sathya TA, Khan M. Diversity of glycosyl hydrolase enzymes from metagenome and their applications in food industry. J Food Sci. 2014;79(11):R2149–R2156.
  • Urbanowicz BR, Catala C, Irwinm D, et al. A tomato endo-beta-1,4,glucanase, SICel9C1, represents a distinct subclass with a new family of carbohydrate-binding modules (CBM49). J Biol Chem. 2007;282(16):12066–12074.
  • Zhou W, Irwin DC, Escovar-Kousen J, et al. Kinetic studies of Thermofida fusca Cel9A active site mutant enzymes. Biochemistry. 2004;43(30):9655–9663.
  • Li Y, Irwin DC, Wilson DB. Processivity, substrate binding and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A. Appl Environ Microbiol. 2007;73(10):3165–3172.
  • Guerin DM, Lascombe MB, Costabel M, et al. Atomic (0.94A) resolution structure of an inverting glycosidase in complex with substrate. J Mol Biol. 2002;316(5):1061–1069.
  • Klemm D, Heublein B, Fink HP, et al. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed. 2005;44:3358–3393.
  • Ding S, Himmel ME. The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem. 2006;54:597–606.
  • Vaaje-Kolstad G, Westereng B, Horn SJ, et al. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science. 2010;330:219–222.
  • Langston JA, Shaghasi T, Abbate E, et al. Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol. 2011;77:7007–7015.
  • Forsberg Z, Mackenzie AK, Sorlie M, et al. Structural and functional characterization of a conserved pair of bacterial cellulose–oxidizing lytic polysaccharidemonooxygenases. Proc Natl Acad Sci USA. 2014;111:8446–8451.
  • Horn SJ, Vaaje-Kolstad G, Westereng B, et al. Novel enzymes for the degradation of cellulose. Biotechnol Biofuels. 2012;5:45–56.
  • Harris PV, Welner D, McFarland KC, et al. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry. 2010;49:3305–3316.
  • Phillips CM, Beeson WT, Cate JH, et al. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol. 2011;6:1399–1406.
  • Quinlan RJ, Sweeney MD, Lo Leggio L, et al. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci USA. 2011;108:15079–15084.
  • Westereng B, Ishida T, Vaaje-Kolstad G, et al. The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is ametal-dependent oxidative enzyme that cleaves cellulose. PLoS One. 2012 [ cited 2017 May 3];6(11):e27807. DOI:10.1371/journal.pone.0027807.
  • Beeson WT, Phillips CM, Cate JHD, et al. Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Biol Chem. 2012;134:890–892.
  • Li X, Beeson WT, Phillips CM et al. Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure. 2012;20:1051–1061.
  • Hemsworth GR, Davies GJ, Walton PH. Recent insights into copper-containing lytic polysaccharide mono-oxygenases. Curr Opin Struc Biol. 2013;23:660–668.
  • Isaksen T, Westereng B, Aachmann FL, et al. A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides. J Biol Chem. 2014;289:2632–2642.
  • Vu VV, Beeson WT, Phillips CM, et al. Determinants of regioselective hydroxylation in the fungal polysaccharide monooxygenases. J Am Chem Soc. 2014;136:562–565.
  • Raguz S, Yague E, Wood DA, et al. Isolation and characterization of a cellulose-growth specific gene from Agaricus bisporus. Gene. 1992;119:183–190.
  • Armesilla AL, Thurston CF, Yague E. CEL1: a novel cellulose binding protein secreted by Agaricus bisporus during growth on crystalline cellulose. FEMS Microbiol Lett. 1994;116:293–299.
  • Levasseur A, Drula E, Lombard V, et al. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels. 2013 [ cited 2017 May 3];6(1):41. DOI:10.1186/1754–6834–6–41.
  • Hemsworth GR, Henrissat B, Davies GJ, et al. Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol. 2014;10:122–126.
  • Lo Leggio L, Simmons TJ, Poulen JN, et al. Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun. 2015 [ cited 2017 May 3];6:5961. DOI:10.1038/ncomms6961.
  • Karlsson J, Saloheimo M, Siika-Aho M, et al. Homologous expression and characterization of Cel61A (EG IV) of Trichoderma reesei. Eur J Biochem. 2001;268:498–507.
  • Vaaje-Kolstad G, Horn SJ, van Aalten DMF, et al. The non-catalytic chitin binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem. 2005;280:28492–28497.
  • Vaaje-Kolstad G, Houston DR, Riemen AHR, et al. Crystal structure and binding properties of the Serratia marcescens chitin-binding protein CBP21. J Biol Chem. 2005;280:11313–11319.
  • Foreman PK, Brown D, Dankmeyer L, et al. Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem. 2003;278:31988–31997.
  • Tian C, Beeson WT, Iavarone AT, et al. Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc Natl Acad Sci USA. 2009;106:22157–22162.
  • Martinez D, Challacombe J, Morgenstern I, et al. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci USA. 2009;106:1954–1959.
  • Vanden WA, Gaskell J, Mozuch M, et al. Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Appl Environ Microbiol. 2010;76:3599–3610.
  • Eastwood DC, Floudas D, Binder M, et al. The plant cell wall decomposing machinery underlies the functional diversity of forest fungi. Science. 2011;333:762–765.
  • Henriksson G, Johansson G, Pettersson G. A critical review of cellobiose dehydrogenases. J Biotechnol. 2000;78:93–113.
  • Zamocky M, Ludwig R, Peterbauer C, et al. Cellobiose dehydrogenase – a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi. Curr Protein Pept Sci. 2006;7:255–280.
  • Karkehabadi S, Hansson H, Kim S, et al. The first structure of a glycoside hydrolase family 61 member, Cel61B from Hypocrea jecorina, at 1.6A˚ resolution. J Mol Biol. 2008;383:144–154.
  • Wu M, Beckham GT, Larsson AM, et al. Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the Basidiomycota fungus Phanerochaete chrysosporium. J Biol Chem. 2013;288:12828–12839.
  • Aachmann FL, Sørlie M, Skja˚k-Bræk G, et al. NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions. Proc Natl Acad Sci USA. 2012;109:18779–18784.
  • Forsberg Z, Røhr AK, Mekasha S, et al. Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases. Biochemistry. 2014;53:1647–1656.
  • Forsberg Z, Vaaje-Kolstad G, Westereng, B, et al. Cleavage of cellulose by a CBM33 protein. Protein Sci. 2011;20:1479–1483.
  • Bey M, Zhou S, Poidevin L, et al. Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monooxygenases (Family GH61) from Podospora anserine. Appl Environ Microbiol. 2013;79:488–496.
  • Vu VV, Beeson WT, Span EA, et al. A family of starch-active polysaccharide monooxygenases. Proc Natl Acad Sci USA. 2014;111:13822–13827.
  • Beeson WT, Iavarone AT, Hausmann CD, et al. Extracellular aldonolactonase from Myceliophthora thermophila. Appl Environ Microbiol. 2011;77:650–656.
  • Sygmund C, Kracher D, Scheiblbrandner S, et al. Characterization of the two Neurospora crassa cellobiose dehydrogenases and their connection to oxidative cellulose degradation. Appl Environ Microbiol. 2012;78(17):6161–6171.
  • Conchie J, Levvy GA. Inhibition of glycosidases by aldonolactones of corresponding configuration. Biochem J. 1957;65:389–395.
  • Vaaje-Kolstad G, Bohle LA, Gaseidnes S, et al. Characterization of the chitinolytic machinery of Enterococcus faecalis V583 and high resolution structure of its oxidative CBM33 enzyme. J Mol Biol. 2012;416(2):239–254.
  • Eibinger M, Ganner T, Bubner P, et al. Cellulose surface degradation by lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency. J Biol Chem. 2014;289:35929–35938.
  • Glass NL, Schmoll M, Cate JHD, et al. Plant cell wall deconstruction by ascomycete fungi. Annu Rev Microbiol. 2013;67:477–498.
  • Segato F, Damasio AR, de Lucas RC, et al. Genomics review of holocellulose deconstruction by aspergilli. Microbiol Mol Biol Rev. 2014;78:588–613.
  • Busk PK, Lange L. Classification of fungal and bacterial lytic polysaccharide monooxygenase. BMC Genomics. 2015 [ cited 2017 May 3];16:368. DOI:10.1186/s12864-015-1601-6.
  • Borisova AS, Isaksen T, Dimarogona M, et al. Structural and functional characterization of a lytic polysaccharide monoxygenase with Broad substrate specificity. J Biol Chem. 2015;290:22955–22969.
  • Arfi Y, Shanshoum M, Rogachev I, et al. Integration of bacterial lytic polysaccharide monoxygenases into designer cellulosomes promotes enhanced cellulose degradation. PNAS. 2014;111(25):9109–9114.
  • Gray KA, Zhou L, Emptago M. Bioethanol Curr Opin Chem Biol. 2006;10(2):141–146.
  • Sajith S, Priji P, Sreedevi S, et al. An overview of fungal cellulases with an industrial perspective. J Nutr Food Sci. 2016 [ cited 2017 May 3];4:461. DOI:10.4172/2155-9600.1000461.
  • Zhou J, Wang YH, Chu J, et al. Identification and purification of the main components of cellulases from a mutant strain of Trichoderma viride T 100-14. Bioresour Technol. 2008;99:6826–6833.
  • Sukumaran RK, Singhania RR, Mathew GM, et al. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energy. 2009;34(2):421–424.
  • Binod P, Sindhu R, Singhania RR, et al. Bioethanol production from rice straw: an overview. Bioresour Technol. 2010;101:4767–4774.
  • Chen H, Qiu W. Key technologies for bioethanol production from lignocellulose. Biotechnol Adv. 2010;28:556–562.
  • Sajith S, . Investigations on the lignocellulolytic activities of certain fungi with special reference to cellulase production [dissertation]. Kerala, India: University of Calicut; 2015.
  • Cannella D, Hsieh CC, Felby C, et al. Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol Biofuels. 2012;5:26–35.
  • Olofsson K, Bertilsson M, Liden GA. Short review on SSF – an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels. 2008 [ cited 2017 May 3];1:7. DOI:10.1186/1754-6834-1-7.
  • Cannella D, Jørgensen H. Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production? Biotechnol Bioeng. 2014;111:59–68.
  • Beguin P, Aubert J. The biological degradation of cellulose. FEMS Microbiol Rev. 1994;13(1):25–28.