1,680
Views
6
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

Optimization of cultivation conditions in banana wastes for production of extracellular β-glucosidase by Trichoderma harzianum Rifai efficient for in vitro inhibition of Macrophomina phaseolina

, ORCID Icon, & ORCID Icon
Pages 921-934 | Received 07 Feb 2017, Accepted 12 Jun 2017, Published online: 21 Jun 2017

References

  • Rayatpanah S, Nanagulyan SG, Alavi SV, et al. Pathogenic and genetic diversity among Iranian isolates of Macrophomina phaseolina. Chilean J Agric Res. 2012;72:1–40.
  • Ganeshamoorthi P, Anand T, Saravanan A, et al. Cultural and genetic variability in Macrophomina phaseolina (Tassi.) Goid and incidence of Mulberry root rot. Arch Phytopath Plant Protec. 2010;43(2):123–132.
  • Abbasi MW, Zaki MJ. Bioefficacy of microbial antagonists against Macrophomina phaseolina on sunflower. Pak J Bot. 2010;42(4):2935–2940.
  • Aboshosha SS, Attaalla SI, El-Korany AE, et al. Characterization of Macrophomina phaseolina isolates affecting sunflower growth in El-Behera governorate. Egypt Int J Agric Biol. 2007;9(6):807–815.
  • Khalili E, Javed MA, Huyop F, et al. Evaluation of Trichoderma isolates as potential biological control agent against soybean charcoal rot disease caused by Macrophomina phaseolina. Biotechnol Biotechnol Equip. 2016;30(3):479–488.
  • Ainsworth GC, Sussman AS. The fungal population: an advanced treatise. New York (NY): Elsevier; 2013.
  • Manera AP, Ores JC, Ribeiro VA, et al. Optimization of the culture medium for the production of b-galactosidase from Kluyveromyces marxianus CCT 7082. Food Technol Biotech. 2008;46(1):66–72.
  • Monteiro VN, do Nascimento Silva R, Steindorff AS, et al. New insights in Trichoderma harzianum antagonism of fungal plant pathogens by secreted protein analysis. Curr Microbiol. 2010;61(4):298–305.
  • Zhang Z, Liu JL, Lan JY, et al. Predominance of Trichoderma and Penicillium in cellulolytic aerobic filamentous fungi from subtropical and tropical forests in China, and their use in finding highly efficient β-glucosidase. Biotechnol Biofuels. 2014;17(7):101–107.
  • Gajera HP, Bambharolia RP, Patel SV, et al. Antagonism of Trichoderma spp. against Macrophomina phaseolina: evaluation of coiling and cell wall degrading enzymatic activities. J Plant Pathol Microbiol. 2012;3:149–230.
  • Coronel-León J, Marqués AM, Bastida J, et al. Optimizing the production of the biosurfactant lichenysin and its application in biofilm control. J Appl Microbiol. 2016;120(1):99–111.
  • Joshi S, Bharucha C, Jha S, et al. Biosurfactant production using molasses and whey under thermophilic conditions. Bioresour Technol. 2008;99(1):195–199.
  • Saimmai A, Sobhon V, Maneerat S. Molasses as a whole medium for biosurfactants production by Bacillus strains and their application. Appl Biochem Biotechnol. 2011;165(1):315–335.
  • Zhu Z, Zhang F, Wei Z, et al. The usage of rice straw as a major substrate for the production of surfactin by Bacillus amyloliquefaciens XZ-173 in solid-state fermentation. J Environ Biol. 2013;30(127):96–102.
  • Slivinski CT, Mallmann E, de Araújo JM, et al. Production of surfactin by Bacillus pumilus UFPEDA 448 in solid-state fermentation using a medium based on okara with sugarcane bagasse as a bulking agent. Process Biochem. 2012;47(12):1848–1855.
  • Wahab RA, Basri M, Rahman RNZRA, et al. Enzymatic production of a solvent-free menthyl butyrate via response surface methodology catalyzed by a novel thermostable lipase from Geobacillus zalihae. Biotechnol Biotechnol Equip. 2014;28(6):1065–1072.
  • Manan FMA, Rahman INA, Marzuki NHC, et al. Statistical modelling of eugenol benzoate synthesis using Rhizomucor miehei lipase reinforced nanobioconjugates. Process Biochem. 2016;51(2):249–262.
  • Wang H, Feng JT, Zhang Q, et al. Optimization of fermentation condition for antibiotic production by Xenorhabdus nematophila with response surface methodology. J Appl Microbiol. 2008;104(3):735–744.
  • Isah AA, Mahat NA, Jamalis J, et al. Synthesis of geranyl propionate in a solvent-free medium using Rhizomucor miehei lipase covalently immobilized on chitosan–graphene oxide beads. Prep Biochem Biotechnol. 2016;3:1–12.
  • Tari C, Ustok FI, Harsa S. Optimization of the associative growth of novel yoghurt cultures in the production of biomass, β-galactosidase and lactic acid using response surface methodology. Prep Biochem Biotechnol. 2009;19(4):236–243.
  • Sriphannam W, Unban K, Ashida H, et al. Medium component improvement for β-galactosidase production by a probiotic strain Lactobacillus fermentum CM33. Afr J Biotechnol. 2012;11(51):11242–11251.
  • Li C J, Zhang X, Zhang LP, et al. Medium optimization for the production of a metagenome-derived-galactosidase by Pichia pastoris using response surface methodology. Afr J Microbiol Res. 2013;7(13):1077–1085.
  • Goujon M, McWilliam H, Li W, et al. new bioinformatics analysis tools framework at EMBL–EBI. Nucleic Acids Res. 2010;38(2):W695–W699.
  • Iqbal HMN, Asgher M, Bhatti HN. Optimization of physical and nutritional factors for synthesis of lignin degrading enzymes by a novel strain of Trametes versicolor. Bioresources. 2011;6(2):1273–1287.
  • Shahzadi T, Anwar Z, Iqbal Z, et al. Induced production of exoglucanase, and [beta]-glucosidase from fungal co-culture of T. viride and G. lucidum. Adv Biosci Biotechnol. 2014;5:426–433.
  • Irshad MN, Anwar Z, But HI, et al. The industrial applicability of purified cellulase complex indigenously produced by Trichoderma viride through solid-state bio-processing of agro-industrial and municipal paper wastes. Bioresources. 2012;8(1):145–157.
  • Kaur J, Chadha BS, Kumar BA, et al. Purification and characterization of ß-glucosidase from Melanocarpus sp. MTCC 3922. Electron J Biotechnol. 2007;10(2):260–270.
  • Terra VS, Homer KA, Rao SG, et al. Characterization of novel β-galactosidase activity that contributes to glycoprotein degradation and virulence in Streptococcus pneumoniae. Infect Immun. 2010;78(1):348–357.
  • Job J, Sukumaran RK, Jayachandran K. Production of a highly glucose tolerant β-glucosidase by Paecilomyces variotii MG3: optimization of fermentation conditions using Plackett–Burman and Box–Behnken experimental designs. World J Microbiol Biotechnol. 2010;26(8):1385–139. 1.
  • Haaland PD. Experimental design in biotechnology. Vol. 105. Boca Raton (FL): CRC Press; 1989.
  • Batra J, Beri D, Mishra S. Response surface methodology based optimization of β-glucosidase production from Pichia pastoris. Appl Biochem Biotechnol. 2014;172(1):380–393.
  • Al-Jazairi M, Abou-Ghorra S, Bakri Y, et al. Optimization of β-galactosidase production by response surface methodology using locally isolated Kluyveromyces marxianus. Int Food Res J. 2015;22(4):1361–1367.
  • Zahoor S, Javed MM, Aftab S, et al. Metabolic engineering and thermodynamic characterization of an extracellular β-glucosidase produced by Aspergillus niger. Afr J Biotechnol. 2011;10(41):8107–8116.
  • Park AR, Park JH, Ahn HJ, et al. Enhancement of β-glucosidase activity from a brown rot fungus Fomitopsis pinicola KCTC 6208 by medium optimization. Mycobiol. 2015;43(1):57–62.
  • Deka D, Bhargavi P, Sharma A, et al. Enhancement of cellulase activity from a new strain of Bacillus subtilis by medium optimization and analysis with various cellulosic substrates. Enzy Res. 2011 [ cited March 1]; [8 p.]. DOI:10.4061/2011/151656.
  • Wang Y, Xu Y, Li JA. Novel extracellular β-glucosidase from Trichosporon asahii: Yield prediction, evaluation and application for aroma enhancement of cabernet sauvignon. J Food Sci. 2012;77(8):505–515.
  • Olajuyigbe FM, Nlekerem CM, Ogunyewo OA. Production and characterization of highly thermostable β-glucosidase during the biodegradation of methyl cellulose by Fusarium oxysporum. Biomed Res Int. 2016 [ cited February 24]; DOI:10.1155/2016/3978124
  • Reddy N, Yang Y. Biofibres from agricultural byproducts for industrial application. Trends Biotechnol. 2005;23(1):22–27.
  • Chauhan PS, Bharadwaj A, Puri N, et al. Optimization of medium composition for alkali-thermostable mannanase production by Bacillus nealsonii PN-11 in submerged fermentation. Int J Curr Microbiol Appl Sci. 2014;3(10):1033–1045.
  • Mahajan PM., Desai KM, Lele SS. Production of cell membrane-bound α-and β-glucosidase by Lactobacillus acidophilus. Food Bioprocess Tech. 2012;5(2):706–718.
  • Ali MB, Irshad M, Anwar Z, et al. Screening and statistical optimization of physiochemical parameters for the production of xylanases from agro-industrial wastes. Adv Space Res. 2016;4:1–20.
  • Iqbal S, Nguyen TH, Nguyen TT, et al. β-Galactosidase from Lactobacillus plantarum WCFS1: biochemical characterization and formation of prebiotic galacto-oligosaccharides. Carbohydr Res. 2010;345(10):1408–1416.
  • Mahapatra S, Vickram AS, Sridharan TB, et al. Screening, production, optimization and characterization of β-glucosidase using microbes from shellfish waste. Biotechnology. 2016;6(2):198–213.
  • Vikash K, Irshita V, Deepak K, et al. Cellulase and β-glucosidase production by Trichoderma viride and Aspergillus wentii in sub-merged fermentation utilizing pretreated lignocellulosic biomass. J Microbiol Biotechnol. 2013;3(5):63–78.
  • Shata HM, El-Deen AMN, Nawwar GA, et al. β-Glucosidase production by mixed culture using crude hemicellulose from rice straw black liquor and peat moss as an inert support. Egypt Pharmaceut J. 2014;1(13):121–129.
  • Teixeira da Silva VDC, de Souza Coto AL, de Carvalho Souza R, et al. Effect of pH, temperature, and chemicals on the endoglucanases and β-glucosidases from the thermophilic fungus Myceliophthora heterothallica F. 2.1. 4. obtained by solid-state and submerged cultivation. Biochem Res Int. 2016 [cited 2017 March 3]; [9781216]. DOI:10.1155/2016/9781216.
  • Garcia NFL, Santos FRDS, Gonçalves FA, et al. Production of β-glucosidase on solid-state fermentation by Lichtheimia ramosa in agroindustrial residues: characterization and catalytic properties of the enzymatic extract. Electron J Biotechnol . 2015;18(4):314–319.
  • Zimbardi AL, Sehn C, Meleiro LP, et al. Optimization of β-glucosidase, β-xylosidase and xylanase production by Colletotrichum graminicola under solid-state fermentation and application in raw sugarcane trash saccharification. Int J Mol Sci. 2013;14(2):2875–2902.
  • Razak MNA, Ibrahim MF, Yee PL, et al. Utilization of oil palm decanter cake for cellulase and polyoses production. Biotechnol Bioprocess Eng. 2012;17(3):547–555.
  • Da Silva Delabona P, Pirota RDPB, Codima CA, et al. Effect of initial moisture content on two Amazon rainforest Aspergillus strains cultivated on agro-industrial residues: Biomass-degrading enzymes production and characterization. Ind Crops Prod. 2013;42:236–242.
  • Abdella A, El-Sayed Mazeed T, Yang ST, et al. Production of β-glucosidase by Aspergillus niger on wheat bran and glycerol in submerged culture: factorial experimental design and process optimization. Curr Opin Biotechnol. 2014;51(10):1331–1337.
  • Hmad IB, Abdeljalil S, Saibi W, et al. Medium initial pH and carbon source stimulate differential alkaline cellulase time course production in Stachybotrys microspora. Appl Biochem Biotechnol. 2014;172(5):2640–2649.
  • Saibi W, Gargouri A. Purification and biochemical characterization of an atypical β-glucosidase from Stachybotrys microspora. J Mol Catal B: Enzym. 2011;72(3):107–115.
  • Nakazawa H, Kawai T, Ida N, et al. Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus β-glucosidase 1 for efficient biomass conversion. Biotechnol Bioeng. 2012;109(1): 92–99.
  • Singhania RR, Patel AK, Sukumaran RK, et al. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol. 2013;127:500–507.
  • Abdullah MT, Ali NY, Suleman P. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary with Trichoderma harzianum and Bacillus amyloliquefaciens. Crop Prot. 2008;27(10):1354–1359.