3,347
Views
10
CrossRef citations to date
0
Altmetric
Article; Pharmaceutical Biotechnology

Application of response surface methodology to optimize the production of antimicrobial metabolites by Micromonospora Y15

ORCID Icon, , , , , , & show all
Pages 1016-1025 | Received 23 Nov 2016, Accepted 14 Jul 2017, Published online: 27 Jul 2017

References

  • Govindarajan G, Santhi SV, Jebakumar SR. Antimicrobial potential of phylogenetically unique actinomycete, Streptomyces sp. JRG-04 from marine origin. Biologicals. 2014;42:305–311.
  • Prabavathy VR, Mathivanan N, Murugesan K. Control of blast and sheath blight diseases of rice using antifungal metabolites produced by Streptomyces, sp. PM5. Biol Control. 2006;39:313–319.
  • Ramesh S, Mathivanan N. Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World J Microbiol Biotechnol. 2010;25:2103–2111.
  • Lee LH, Cheah YK, Sidik SM, et al. Molecular characterization of Antarctic actinobacteria and screening for antimicrobial metabolite production. World J Microbiol Biotechnol. 2012;28:2125–2137.
  • Bull AT, Stach JEM. Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol. 2007;15:491–499.
  • Hu P, Wang XQ. The research process in antibiotics from marine microbe. Food Sci. 2004;25:397–401. Chinese.
  • Manivasagan P, Venkatesan J, Sivakumar K, et al. Pharmaceutically active secondary meta-bolites of marine actinobacteria. Microbiol Res. 2014;169:262–278.
  • Subramani R, Aalbersberg W. Marine actinomycetes: an ongoing source of novel bioactive metabolites. Microbiol Res. 2012;167:571–580.
  • Kock I, Maskey RP, Biabani MAF, et al. 1-Hydroxy-1-norresistomycin and resistoflavin methy ether: new antibiotics from marine-derived Streptomycetes. J Antibiot. 2005;58:530–534.
  • Fiedler HP, Bruntner C, Riedlinger J, et al. Proximicin A, B and C, novel aminofuran anti-bioticand anticancer compounds isolated from marine strains of the actinomycete Verrucosis-pora. J Antibiot. 2008;61:158–163.
  • Berdy J. Bioactive microbial metabolites: a personal view. J Antibiot. 2005;58:1–26.
  • Hirsch AM, Valdés M. Micromonospora: an important microbe for biomedicine and potentially for biocontrol and biofuels. Soil Biol Biochem. 2010;42:536–542.
  • Yasuhiro I, Trujillo ME, Eustoquio M, et al. Antitumor anthraquinones from an endophytic actinomycete Micromonospora lupini sp. nov. Bioorg Med Chem Lett. 2007;17:3702–3705.
  • Boumehira AZ, El-Enshasy HA, Hacène H, et al. Recent progress on the development of antibiotics from the genus Micromonospora. Biotechnol Biopro E. 2016;21:199–223.
  • Gao RX, Liu CX, Zhao JW, et al. Micromonospora jinlongensis sp nov. isolated from muddy soilin China and emended description of the genus Micromonospora. Antonie Van Leeuwenhoek. 2014;105:307–315.
  • Ströch K, Zeeck A, Antal N, et al. Retymicin, galtamycin B, saquayamycin Z and ribofur-anosyllumichrome, novel secondary metabolites from Micromonospora sp. Tue 6368. J Antibiot. 2005;58:103–110.
  • Banskota AH, Aouidate M, Dan S, et al. TLN-05220, TLN-05223, new echinosporamicin–type antibiotics, and proposed revision of the structure of bravomicins. J Antibiot. 2009;62:565–570.
  • Zhang M, Wang YT, Wang LP, et al. Screening of antimicrobial actinomycetes Y15 from marine and physicochemical properties of its metabolites. Microbiol China. 2017;44:513–524. Chinese.
  • Hirsch P, Mevs U, Kroppenstedt RM, et al. Cryptoendolithic actinomycetes from Antarctic sandstone rock samples: Micromonospora endolithica sp. nov. and two isolates related to Micromonospora coerulea Jensen 1932. Syst Appl Microbiol. 2004;27:166–174.
  • Wang ZW, Liu XL. Medium optimization for antifungal active substances production from a newly isolated Paenibacillus. sp. using response surface methodology. Bioresour Technol. 2008;99:8245–8251.
  • Miao JY, Xu MB, Guo HX, et al. Optimization of culture conditions for the production of antimicrobial substances by probiotic Lactobacillus paracasei, subsp. Tolerans FX-6. J Funct Foods.2015;18:244–253.
  • Kumar M, Jain AK, Ghosh M, et al. Statistical optimization of physical parameters for enhanced bacteriocin production by L. casei. Biotechnol Bioprocess Eng. 2012;17:606–616.
  • Mo JX, Wang ZG, Xu WH, et al. Enhanced production of dimethyl phthalate-degrading strain Bacillus, sp. QD 14, by optimizing fermentation medium. Electron J Biotechnol. 2015;20:244–251.
  • Lee H, Song M, Hwang S. Optimizing bioconversion of deproteinated cheese whey to mycelia of Ganodermalucidum. Process Biochem.2003;38:1685–1693.
  • Pinho C, Melo A, Mansilha C, et al. Optimization of conditions for anthocyanin hydrolysis from red wine using response surface methodology (RSM). J Agric Food Chem. 2011;59:50–55.
  • Khajeh M, Ghanbari M. Optimization of microwave-assisted extraction procedure to determine metal in fish muscles using Box-Behnken Design. Food Anal Method. 2011;4:431–436.
  • Messaoudi S, Kergourlay G, Dalgalarrondo M, et al. Purification and characterization of a new bacteriocin active against Campylobacter produced by Lactobacillus salivarius SMXD51. Food Microbiol. 2012;32:129–134.
  • Parente E, Brienza C, Moles M, et al. A comparison of methods for the measurement of bacteriocin activity. J Microbiol Method. 1995;22:95–108.
  • Ghanem NB, Yusef HH, Mahrouse HK. Production of Aspergillus terreus, xylanase in solid-statecultures: application of the Plackett-Burman experimental design to evaluate nutritional requirements. Bioresour Technol. 2000;73:113–121.
  • Zhao JL, Wang XH, Sun WB, et al. Medium optimization for palmarumycin C13 production in liquid culture of endophytic fungus Berkleasmium sp. Dzf12 using response surface methodology. Electron J Biotechn. 2013;16:16.
  • Wang NN, Li W, Yu SF, et al. Optimization of fermentation medium for bacteriocin production of L. lactis KLDS4.0325 by response surface methodology. Sci Technol Food Ind. 2016;37:137–142. Chinese.
  • Shih IL, Kuo CY, Hsieh FC, et al. Use of surface response methodology to optimize culture conditions for iturin A production by Bacillus subtilis, in solid-state fermentation. J Chin Inst Chem Eng. 2008;39:635–643.
  • Chen X, Li Y, Du G, et al. Application of response surface methodology in medium optimization for spore production of Coniothyrium minitans, in solid-state fermentation. World J Microb Biotechnol. 2005;21:593–599.
  • Liu H, Du X, Yuan Q, et al. Optimisation of enzyme assisted extraction of silybin from the seeds of Silybum marianum by Box-Behnken experimental design. Phytochem Anal. 1990;20:475–483.
  • Sharma P, Singh L, Dilbaghi N. Optimization of process variables for decolorization of Disperse Yellow 211 by Bacillus subtilis, using Box-Behnken design. J Hazard Mater. 2009;164:1024–1029.
  • Murthy MSRC, Swaminathan T, Rakshit SK, et al. Statistical optimization of lipase catalyzed hydrolysis of methyloleate by response surface methodology. Bioprocess Eng. 2000;22:35–39.
  • Maldonado LA, Fenical W, Jensen PR, et al. Salinispora arenicola gen. nov. sp. nov. and Salinispora tropica sp. nov. obligate marine actinomycetes belonging to the family Micromonosporaceae. Int J Syst Evol Microbiol. 2005;55:1759–1766.
  • Lei XL, Hong K, Ruan JS. Micromonosporaceae and their important role in marine drug development. Biotech Bull. 2006;S1:87–90. Chinese.