1,411
Views
9
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

Molecular cloning and expression analysis of seven sucrose synthase genes in bamboo (Bambusa emeiensis): investigation of possible roles in the regulation of cellulose biosynthesis and response to hormones

, , , , , & show all
Pages 316-323 | Received 02 Jun 2017, Accepted 29 Nov 2017, Published online: 08 Dec 2017

References

  • Amor Y, Haigler CH, Johnson S, et al. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc Natl Acad Sci USA. 1995;92:9353–9357.
  • Barratt DH, Barber L, Kruger NJ, et al. Multiple, distinct isoforms of sucrose synthase in pea. Plant Physiol. 2001;127:655–664.
  • Baroja-Fernandez E, Jose MF, Li J, et al. Sucrose synthase activity in the sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production. Proc Natl Acad Sci USA. 2012;109:321–326.
  • Haigler CH, Ivanova-Datcheva M, Hogan PS, et al. Carbon partitioning to cellulose synthesis. Plant Mol Biol. 2001;47:29–51.
  • Albrecht G, Mustroph A. Localization of sucrose synthase in wheat roots: increased in situ activity of sucrose synthase correlates with cell wall thickening by cellulose deposition under hypoxia. Planta. 2003;217:252–260.
  • Persia D, Cai G, Del CC, et al. Sucrose synthase is associated with the cell wall of tobacco pollen tubes. Plant Physiol. 2008;147:1603–1618.
  • Coleman H, Yan J, Mansfield S. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci USA. 2009;106:13118–13123.
  • Zhang M, Song X, Sun X, et al. The relationship between cellulose content and the contents of sugars and minerals during fiber development in colored cotton cultivars. Cellulose. 2012;19:2003–2014.
  • Baier M, Keck M, Goedde V, et al. Knockdown of the symbiotic sucrose synthase MtSucS1 affects arbuscule maturation and maintenance in mycorrhizal roots of Medicago truncatula. Plant Physiol. 2010;152:1000–1014.
  • Islam MZ, Hu X, Long FJ, et al. Genome-wide identification and expression profile analysis of citrus sucrose synthase genes: investigation of possible roles in the regulation of sugar accumulation. PloS One. 2014 [cited 2017 Jul 3];9(11):e113623. DOI:10.1371/journal.pone.0113623.
  • Chiu WB, Lin CH, Chang CJ, et al. Molecular characterization and expression of four cDNAs encoding sucrose synthase from green bamboo Bambusa oldhamii. New Phytol. 2006;170:53–63.
  • Su JC. Purification and characterization of sucrose synthetase from the shoot of bamboo Leleba oldhami. Plant Physiol. 1977;60:17–21.
  • Rai V, Ghosh JS, Pal A, et al. Identification of genes involved in bamboo fiber development. Gene. 2011;478:19–27.
  • Baud S, Vaultier MN, Rochat C. Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J Exp Bot. 2004;55:397–409.
  • Duncan KA, Hardin SC, Huber SC. The three maize sucrose synthase isoforms differ in distribution, localization, and phosphorylation. Plant Cell Physiol. 2006;47:959–971.
  • Alonso-Simón A, Neumetzler L, Garcia-Angulo R, et al. Plasticity of xyloglucan composition in bean (Phaseolus vulgaris)-cultured cells during habituation and dehabituation to lethal concentrations of dichlobenil. Mol Plant. 2010;3:603–609.
  • Cho JI, Kim HB, Kim CY, et al. Identification and characterization of the duplicate rice sucrose synthase genes OsSUS5 and OsSUS7 which are associated with the plasma membrane. Mol Cells. 2011;31:553–556.
  • Chen A, He S, Li F, et al. Analyses of the sucrose synthase gene family in cotton: structure, phylogeny and expression patterns. BMC Plant Biol. 2012 [cited 2017 Jul 3];12:85. DOI:10.1186/1471-2229-12-85
  • Zhang CH, Yu ML, Ma RJ, et al. Structure, expression profile, and evolution of the sucrose synthase gene family in peach (Prunus persica). Acta Physiol Plant. 2015 [cited 2017 Jul 3];37:81. DOI:10.1007/s1173
  • Horst I, Welham T, Kelly S, et al. TILLING mutants of Lotus japonicus reveal that nitrogen assimilation and fixation can occur in the absence of nodule-enhanced sucrose synthase. Plant Physiol. 2007;144:806–820.
  • Hirose T, Scofield GN, Terao T. An expression analysis profile for the entire sucrose synthase gene family in rice. Plant Sci. 2008;174:534–543.
  • Xiao X, Tang C, Fang Y, et al. Structure and expression profile of the sucrose synthase gene family in the rubber tree: indicative of roles in stress response and sucrose utilization in the laticifers. Febs J. 2014;281:291–305.
  • Zhang D, Xu B, Yang X, et al. The sucrose synthase gene family in Populus: structure, expression, and evolution. Tree Genet Genomes. 2011;7:443–456.
  • Wang Z, Wei P, Wu M, et al. Analysis of the sucrose synthase gene family in tobacco: structure, phylogeny, and expression patterns. Planta. 2015;242:153–166.
  • Cao Y, Tang X, Giovannoni J, et al. Functional characterization of a tomato COBRA-like gene functioning in fruit development and ripening. BMC Plant Biol. 2012 [cited 2017 Jul 3];12:211. DOI:10.1186/1471-2229-12-211.
  • Finkelstein RR, Gampala SS, Rock CD. Abscisic acid signaling in seeds and seedlings. Plant Cell. 2002;14(suppl.):S15–S45.
  • Koo AJ, Gao X, Jones AD, et al. A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J. 2009;59:974–986.
  • Zhu XD, Wang MQ, Li XP, et al. Genome-wide analysis of the sucrose synthase gene family in grape (Vitis vinifera): structure, evolution, and expression profiles. Genes. 2017 [cited 2017 Jul 3];8(4):111. DOI:10.3390/genes8040111
  • Shlomo G, Nitsan L, Ofer S, et al. Suppression of sucrose synthase affects auxin signaling and leaf morphology in tomato. PloS One. 2017 [cited 2017 Jul 3];12(8): e0182334. DOI:10.1371/journal.pone.0182334
  • Quynh AN, Sheng L, Seung GW, et al. Pronounced phenotypic changes in transgenic tobacco plants overexpressing sucrose synthase may reveal a novel sugar signaling pathway. Front Plant Sci. 2016 [cited 2017 Jul 3];6:1216. DOI:10.3389/fpls.2015.01216
  • Delmer DP, Read SM, Cooper G. Identification of a receptor protein in cotton fibers for the herbicide 2,6-dichlorobenzonitrile. Plant Physiol. 1987;84:415–420.
  • Shedletzky E, Shmuel M, Trainin T, et al. Cell wall structure in cells adapted to growth on the cellulose-synthesis inhibitor 2, 6-dichlorobenzonitrile: a comparison between two dicotyledonous plants and a graminaceous monocot. Plant Physiol. 1992;100:120–130.
  • Himmelspach R, Williamson RE, Wasteneys GO. Cellulose microfibril alignment recovers from DCB-induced disruption despite microtubule disorganization. Plant J. 2003;36:565–575.
  • Peng L, Zhang L, Cheng X, et al. Disruption of cellulose synthesis by 2, 6-dichlorobenzonitrile affects the structure of the cytoskeleton and cell wall construction in Arabidopsis. Plant Biol. 2013;15:405–414.
  • DeBolt S, Gutierrez R, Ehrhardt DW, et al. Nonmotile cellulose synthase subunits repeatedly accumulate within localized regions at the plasma membrane in Arabidopsis hypocotyl cells following 2,6-dichlorobenzonitrile treatment. Plant Physiol. 2007;145:334–338.