5,341
Views
24
CrossRef citations to date
0
Altmetric
Review; Agriculture and Environmental Biotechnology

Recent research progress in combatting root parasitic weeds

&
Pages 221-240 | Received 23 Nov 2017, Accepted 19 Dec 2017, Published online: 04 Jan 2018

References

  • Rubiales D, Fernández-Aparicio M. Innovations in parasitic weeds management in legume crops. A review. Agron Sustain Dev. 2012;32:433–449.
  • Parker C. Observations on the current status of Orobanche and Striga problems worldwide. Pest Manage Sci. 2009;65:453–459.
  • Parker C. Parasitic weeds: a world challenge. Weed Sci. 2012;60:269–276.
  • Ejeta G. Breeding for Striga resistance in sorghum: exploitation of an intricate host-parasite biology. Crop Sci. 2007;47:S216–S227.
  • Ejeta G, Butler G. Host-parasite interactions throughout the Striga life cycle, and their contributions to Striga resistance. Afr Crop Sci J. 1993;1:75–80.
  • Ejeta G. The Striga scourge in Africa: a growing pandemic. In: Ejeta G, Gressel J, editors. Integrating new technologies for Striga control. Singapore: World Scientific Publishing; 2007. p. 3–16.
  • Mohamed KI, Papes M. Global invasive potential of 10 parasitic witchweeds and related Orobanchaceae. Ambio. 2006;35:281–288.
  • Grenz JH, Sauerborn J. Mechanisms limiting the geographical range of the parasitic weed Orobanche crenata. Agric Ecosyst Environ. 2007;122:275–281.
  • Mohamed AH, Housley TL, Ejeta G. An in vitro technique for studying specific Striga resistance mechanisms in sorghum. Afr J Agric Res. 2010;5:1868–1875.
  • Mohamed AH, Housley TL, Ejeta G. Inheritance of hyper sensitive response to Striga parasitism in sorghum [Sorghum bicolor (L.) Moench]. Afr J Agric Res. 2010;5:2720–2729.
  • Yoneyama K, Awad AA, Xie X, et al. Strigolactones as germination stimulants for root parasitic plants. Plant Cell Physiol. 2010;51:1095–1103.
  • Mohemed N, Charnikhova T, Bakker EJ, et al. Evaluation of field resistance to Striga hermonthica (Del.) Benth. in Sorghum bicolor (L.) Moench. The relationship with strigolactones. Pest Manage Sci. 2016;72:2082–2090.
  • Gobena D, Shimels M, Rich PJ, et al. Mutation in sorghum LOW GERMINATION STIMULANT 1 alters strigolactones and causes Striga resistance. PNAS. 2017;114:4471–4476.
  • Satish K, Gutema Z, Grenier C, et al. Molecular tagging and validation of microsatellite markers linked to the low germination stimulant gene (lgs) for Striga resistance in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet. 2012;124:989–1003.
  • Mohamed A, Ali R, Elhassan O, et al. First products of DNA marker-assisted selection in sorghum released for cultivation by farmers in sub-Saharan Africa. J Plant Sci Mol Breeding. 2014 [cited 2017 Dec 14]; [10 p.]. DOI:10.7243/2050-2389-3-3
  • Yohannes T, Abraha T, Kiambi D, et al. Marker-assisted introgression improves Striga resistance in an Eritrean farmer-preferred sorghum variety. Field Crop Res. 2015;173:22–29.
  • Mbuvi DA, Masiga CW, Kuria E, et al. Novel sources of witchweed (Striga) resistance from wild sorghum accessions. Front Plant Sci. 2017 [cited 2017 Dec 14]; [15 p.]. DOI:10.3389/fpls.2017.00116
  • Cissoko M, Boisnard A, Rodenburg J, et al. New Rice for Africa (NERICA) cultivars exhibit different levels of post-attachment resistance against the parasitic weeds Striga hermonthica and Striga asiatica. New Phytol. 2011;192:952–963.
  • Jamil M, Rodenburg J, Charnikhova T, et al. Pre-attachment Striga hermonthica resistance of New Rice for Africa (NERICA) cultivars based on low strigolactone production. New Phytol. 2011;192:964–975.
  • Rodenburg J, Cissoko M, Kayeke J, et al. Do NERICA rice cultivars express resistance to Striga hermonthica (Del.) Benth. and Striga asiatica (L.) Kuntze under field conditions ? Field Crop Res. 2015;170:83–94.
  • Rodenburg J, Cissoko M, Kayongo N, et al. Genetic variation and host-parasite specificity of Striga resistance and tolerance in rice: the need for predictive breeding. New Phytol. 2017;214:1267–1280.
  • Atera E, Itoh K, Azuma T, et al. Response of NERICA rice Striga hermonthica infections in Western Kenya. Int J Agric Biol. 2012;14:271–275.
  • Samejima H, Babiker AG, Mustafa A, et al. Identification of Striga hermonthica-resistant upland rice varieties in Sudan and their resistance phenotypes. Front Plant Sci. 2016 [cited 2017 Dec 14]; [12 p.]. DOI:10.3389/fpls.2016.00634
  • Mutuku JM, Yoshida S, Shimizu T, et al. The WRKY45-dependent signalling pathway is required for resistance against Striga hermonthica parasitism. Plant Physiol. 2015;168:1152–1163.
  • Kountche B, Hash CT, Dodo H, et al. Development of a pearl millet Striga-resistant genepool: response to five cycles of recurrent selection under Striga-infested field conditions in West Africa. Field Crop Res. 2013;154:82–90.
  • Moumouni KH, Kountche BA, Jean M, et al. Construction of a genetic map for pearl millet, Pennisetum glaucum (L.) R. Br., using a genotyping-by-sequencing (GBS) approach. Mol Breeding. 2015 [cited 2017 Dec 14]; [10 p.]. DOI:10.1007/s11032-015-0212-x
  • Gressel J. Needs for and environmental risks from transgenic crops in the developing world. New Biotechnol. 2010;27:522–527.
  • Menkir A, Adetimirin VO, Yallou CG, et al. Relationship of genetic diversity of inbred lines with different reactions to Striga hermonthica (Del.) Benth and the performance of their crosses. Crop Sci. 2010;50:602–611.
  • Badu-Apraku B, Yallou CG, Alidu H, et al. Genetic improvement of extra-early maize cultivars for grain yield and Striga resistance during three breeding eras. Crop Sci. 2016;56:2564–2578.
  • Badu-Apraku B, Yallou B, Oyekunle M. Genetic gains from selection for high grain yield and Striga resistance in early maturing maize cultivars of three breeding periods under Striga-infested and Striga-free environments. Field Crop Res. 2013;147:54–67.
  • Badu-Apraku B, Annor B, Oyekunle M, et al. Grouping of early maturing quality protein maize inbreds based on SNP markers and combining ability under multiple environments. Field Crop Sci. 2015;183:169–183.
  • Badu-Apraku B, Fakorede MAB, Talabi AO, et al. Gene action and heterotic groups of early white quality protein maize inbreds under multiple stress environments. Crop Sci. 2016;56:183–199.
  • Badu-Apraku B, Fakorede MAB, Oyekunle M. Agronomic traits associated with genetic gains in maize yield during three breeding eras in West Africa. Maydica. 2014;59:49–57.
  • Badu-Apraku B, Fakorede MAB, Oyekunle M, et al. Gains in grain yield of Early maize cultivars developed during three breeding eras under multiple environments. Crop Sci. 2015;55:527–539.
  • Ifie BE, Badu-Apraku B, Gracen V, et al. Genetic analysis of grain yield of IITA and CIMMYT early-maturing maize inbreds under Striga-infested and low–soil-nitrogen environments. Crop Sci. 2015;55:610–623.
  • Badu-Apraku B, Fakorede MAB, Oyekunle M, et al. Genetic gains in grain yield under nitrogen stress following three decades of breeding for drought tolerance and Striga resistance in early maturing maize. J Agric Sci. 2016;154:647–661.
  • Badu-Apraku B, Oyekunle M, Menkir A, et al. Comparative performance of early-maturing maize cultivars developed in three eras under drought stress and well-watered environments in West Africa. Crop Sci. 2013;53:1298–1311.
  • Amusan IO, Rich PJ, Housley T, et al. An in vitro method for identifying postattachment Striga resistance in maize and sorghum. Agron J. 2011;103:1472–1478.
  • Karaya H, Njoroge K, Mugo S, et al. Determination of levels of Striga germination stimulants for maize gene bank accessions and elite inbred lines. Int J Plant Prod. 2012;6:209–223.
  • Menkir A. Effect of genetic divergence of Striga hermonthica (Delile) Benth.-resistant maize inbred lines on heterosis and hybrid performance under parasite pressure. Crop Sci. 2011;51:1591–1602.
  • Menkir A, Makumbi D, Franco J. Assessment of reaction patterns of hybrids to Striga hermonthica (Del.) Benth. under artificial infestation in Kenya and Nigeria. Crop Sci. 2012;52:2528–2537.
  • Akinwale RO, Badu-Apraku B, Fakorede MAB, et al. Heterotic grouping of tropical early-maturing maize inbred lines based on combining ability in Striga-infested and Striga-free environments and the use of SSR markers for genotyping. Field Crop Res. 2014;156:48–62.
  • Mengesha WA, Menkir A, Unakchukwu N, et al. Genetic diversity of tropical maize inbred lines combining resistance to Striga hermonthica with drought tolerance using SNP markers. Plant Breed. 2017;136:338–343.
  • Abdulmalik RO, Menkir A, Meseka SK, et al. Genetic gains in grain yield of a maize population improved through marker assisted recurrent selection under stress and non-stress conditions in West Africa. Front Plant Sci. 2017 [cited 2017 Dec 14]; [11 p.]. DOI:10.3389/fpls.2017.00841
  • Runo S, Macharia S, Alakonya A, et al. Striga parasitizes transgenic hairy roots of Zea mays and provides a tool for studying plant-plant interactions. Plant Methods. 2012 [cited 2017 Dec 14]; [11 p.]. DOI:10.1186/1746-4811-8-20
  • Li J, Lis KE, Timko MP. Molecular genetics of race-specific resistance of cowpea to Striga gesnerioides (Willd.). Pest Manage Sci. 2009;65:520–527.
  • Yoder JI, Scholes JD. Host plant resistance to parasitic weeds; recent progress and bottlenecks. Curr Opin Plant Biol. 2010;13:478–484.
  • Desalegne BA, Mohammed S, Dagne K, et al. Assessment of genetic diversity in Ethiopian cowpea [Vigna unguiculata (L.) Walp.] germplasm using simple sequence repeat markers. Plant Mol Biol Rep. 2016;34:978–992.
  • Huang K, Mellor KE, Paul SN, et al. Global changes in gene expression during compatible and incompatible interactions of cowpea (Vigna unguiculata L.) with the root parasitic angiosperm Striga gesnerioides. Genomics. 2012 [cited 2017 Dec 14] [15 p.]. DOI:10.1186/1471-2164-13-402
  • Omoigui LO, Ishiyaku MF, Ousmane B, et al. Application of fast technology for analysis (FTA) for sampling and recovery of deoxyribonucleic acid (DNA) for molecular characterization of cowpea breeding lines for Striga resistance. Afr J Biotechnol. 2011;10:19681–19986.
  • Muranaka S, Fatokun C, Boukar O. Stability of Striga gesnerioides resistance mechanism in cowpea under high-infestation level, low soil fertility and drought stresses. J Food Agric Environ. 2011;9:313–318.
  • Tignegre JBS, Ouedraogo JT, Melis R, et al. Identification of new sources of resistance to Striga gesnerioides in cowpea germplasm. Plant Breed. 2013;132:330–336.
  • Noubissie Tchiagam J-B, Bell JM, Guissai Birwe S, et al. Varietal response of cowpea (Vigna unguiculata (L.) Walp.) to Striga gesnerioides (Willd.) Vatke race SG5 infestation. Not Bot Hort Agrobot. 2010;38:33–41.
  • Mellor KE, Hoffman AM, Timko MP. Use of ex vitro composite plants to study the interaction of cowpea (Vigna unguiculata L.) with the root parasitic angiosperm Striga gesnerioides. Plant Methods. 2012 [cited 2017 Dec 14]; [12 p.]. DOI:10.1186/1746-4811-8-22
  • Vrănceanu AV, Tudor VA, Stoenescu FM, et al. Virulence groups of Orobanche cumana Wallr., differential hosts and resistance sources and genes in sunflower. Proceedings of the 9th International Sunflower Conference. Vol. 1; 1980 June 8–13; Malaga, Spain, Paris: International Sunflower Association; 1980. p. 74–82.
  • Miladinovic D, Dedic B, Quiróz F. Orobanche cumana Wallr. resistance of commercial sunflower cultivars grown in Argentina. J Basic Appl Genet. 2012;23:37–41.
  • Imerovski I, Dimitrijević A, Miladinović D, et al. Mapping of a new gene for resistance to broomrape races higher than F. Euphytica. 2016;209:281–289.
  • Rodríguez-Ojeda MI, Pineda-Martos R, Alonso LC, et al. A dominant avirulence gene in Orobanche cumana triggers Or5 resistance in sunflower. Weed Res. 2013;53:322–327.
  • Cvejic S, Dedic B, Jocic S, et al. Broomrape resistance in newly developed sunflower inbred lines. Proceedings of the 18th International Sunflower Conference; 2012 Feb 27–Mar 1; Mar del Plata, Argentina, Paris: International Sunflower Association; 2012. p. 1037–1042.
  • Velasco L, Pérez-Vich B, Yassein AAM, et al. Inheritance of resistance to sunflower broomrape (Orobanche cumana Wallr.) in an interspecific cross between Helianthus annuus and Helianthus debilis subsp. tardiflorus. Plant Breed. 2012;131:220–221.
  • Christov M. Contribution of interspecific and intergeneric hybridization to sunflower breeding. Helia. 2013;36:1–18.
  • Cvejić S, Jocić S, Dedić B, et al. Determination of resistance to broomrape in newly developed sunflower inbred lines. Proceedings of the 3rd International Symposium on Broomrape (Orobanche spp.) in Sunflower; 2014 June 3–14; Córdoba, Spain, Paris: International Sunflower Association; 2014. p. 184–188.
  • Louarn J, Boniface M-C, Pouilly N, et al. Sunflower resistance to broomrape (Orobanche cumana) is controlled by specific QTLs for different parasitism stages. Front Plant Sci. 2016 [cited 2017 Dec 14]; [14 p.]. DOI:10.3389/fpls.2016.00590
  • Sillero JC, Rojas-Molina MM, Avila CM, et al. Induction of systemic acquired resistance against rust, ascochyta blight and broomrape in faba bean by exogenous application of salicylic acid and benzothiadiazole. Crop Prot. 2012;34:65–69.
  • Imerovski I, Dimitrijevic A, Miladinovic D, et al. Identification of PCR markers linked to different Or genes in sunflower. Plant Breed. 2013;132:115–120.
  • Akhtouch B, del Moral L, Leon A, et al. Genetic study of recessive broomrape resistance in sunflower. Euphytica. 2016;209:419–428.
  • Şestacova T, Giscă I, Cucereavîi A, et al. Expression of defence-related genes in sunflower infected with broomrape. Biotechnol Biothchnol Equip. 2016;30:685–691.
  • Fernández-Aparicio M, Moral A, Kharrat M, et al. Resistance against broomrapes (Orobanche and Phelipanche spp.) in faba bean (Vicia faba) based in low induction of broomrape seed germination. Euphytica. 2012;186:897–905.
  • Rubiales D, Rojas-Molina MM, Sillero JC. Characterization of resistance mechanisms in faba bean (Vicia faba) against broomrape species (Orobanche and Phelipanche spp.). Front Plant Sci. 2016 [cited 2017 Dec 14]; [8 p.]. DOI:10.3389/fpls.2016.01747
  • Abbes Z, Kharrat M, Pouvreau JB, et al. The dynamics of faba bean (Vicia faba L.) parasitism by Orobanche foetida. Phytopathol Mediterr. 2010;49:239–248.
  • Fernández-Aparicio M, Kisugi T, Xie X, et al. Low strigolactone root exudation: a novel mechanism of broomrape (Orobanche and Phelipanche spp.) resistance available for faba bean breeding. J Agric Food Chem. 2014;62:7063–7071.
  • Trabelsi I, Abbes Z, Amri M, et al. Study of some resistance mechanisms to Orobanche spp. infestation in faba bean (Vicia faba L.) breeding lines in Tunisia. Plant Prod Sci. 2016;19:562–573.
  • Trabelsi I, Yoneyama K, Abbes Z, et al. Characterization of strigolactones produced by Orobanche foetida and Orobanche crenata resistant faba bean (Vicia faba L.) genotypes and effects of phosphorous, nitrogen, and potassium deficiencies on strigolactone production. S Afr J Bot. 2017;108:15–22.
  • Kharrat M, Abbes Z, Amri M. A new faba bean small seeded variety Najeh tolerant to Orobanche registered in the Tunisian catalogue. Tunis J Plant Prot. 2010;5:125–130.
  • Gutiérrez N, Palomino C, Satovic Z, et al. QTLs for Orobanche spp. resistance in faba bean: identification and validation across different environments. Mol Breeding. 2013;32:909–922.
  • Rubiales D, Flores F, Emeran AA, et al. Identification and multi-environment validation of resistance against broomrapes (Orobanche crenata and Orobanche foetida) in faba bean (Vicia faba). Field Crop Res. 2014;166:58–65.
  • Trabelsi I, Abbes Z, Amri M, et al. Performance of faba bean genotypes with Orobanche foetida Poir. and Orobanche crenata Forsk. infestation in Tunisia. Chil J Agric Res. 2015;75:27–34.
  • Dor E, Yoneyama K, Wininger S, et al. Strigolactone deficiency confers resistance in tomato line SL-ORT1 to the parasitic weeds Phelipanche and Orobanche spp. Phytopathology. 2011;101:213–222.
  • Dor E, Alperin B, Wininger S, et al. Characterization of a novel tomato mutant resistant to the weedy parasites Orobanche and Phelipanche spp. Euphytica. 2010;171:371–380.
  • Koltai H, LekKala SP, Bhattacharya C, et al. A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions. J Exp Bot. 2010;61:1739–1749.
  • Disciglio G, Lops F, Carlucci A, et al. Effects of different methods to control the parasitic weed Phelipanche ramosa (L.) Pomel in processing tomato crops. Ital J Agron. 2016;11:39–46.
  • Vogel JT, Walter MH, Giavalisco P, et al. SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant J. 2010;61:300–311.
  • Kacan K, Tursun N. Effect of planting time and tomato varieties on broomrape (Phelipanche aegyptiaca) emergence and tomato yield in Western Turkey. Res Crops. 2012;13:1070–1077.
  • Tokasi S, Bannayan Aval M, Mashhadi HR, et al. Screening of resistance to Egyptian broomrape infection in tomato varieties. Planta Daninha. 2014;32:109–116.
  • Torres-Vera R, García JM, Pozo MJ, et al. Expression of molecular markers associated to defense signalling pathways and strigolactone biosynthesis during the early interaction tomato-Phelipanche ramosa. Physiol Mol Plant Pathol. 2016;94:100–107.
  • Bardaro N, Marcotrigiano AR, Bracuto V, et al. Genetic analysis of resistance to Orobanche crenata (Forsk.) in a pea (Pisum sativum L.) low-strigolactone line. J Plant Pathol. 2016;98:671–675.
  • Pavan S, Schiavulli A, Marcotrigiano AR, et al. Characterization of low-strigolactone germplasm in pea (Pisum sativum L.) resistant to crenate broomrape (Orobanche crenata Forsk.). Mol Plant Microbe Interact. 2016;29:743–749.
  • Fondevilla S, Fernández-Aparicio M, Satovic Z, et al. Identification of quantitative trait loci for specific mechanisms of resistance to Orobanche crenata Forsk. in pea (Pisum sativum L.). Mol Breeding. 2010;25:259–272.
  • Nefzi F, Trabelsi I, Amri M, et al. Response of some chickpea (Cicer arietinum L.) genotypes to Orobanche foetida Poir. parasitism. Chil J Agric Res. 2016;76:170–178.
  • Brahmi I, Mabrouk Y, Brun G, et al. Phenotypical and biochemical characterisation of resistance for parasitic weed (Orobanche foetida Poir.) in radiation-mutagenised mutants of chickpea. Pest Manage Sci. 2016;72:2330–2338.
  • Darvishzadeh R. Genetic variability, structure analysis, and association mapping of resistance of resistance to broomrape (Orobanche aegyptiaca Pers.) in tobacco. J Agric Sci Technol. 2016;18:1407–1418.
  • Gauthier M, Véronéci C, El-Halmouch Y, et al. Characterisation of resistance to branched broomrape, Phelipanche ramosa, in winter oilseed rape. Crop Prot. 2012;42:56–63.
  • Teimouri Jervekani M, Karimmojeni H, Brainard DC, et al. Sesame genotype influences growth and phenology of Phelipanche aegyptiaca. Ann Appl Biol. 2016;169:46–52.
  • Fernández-Aparicio M, Rubiales D. Characterisation of resistance to crenate broomrape (Orobanche crenata Forsk.) in Lathyrus cicera L. Euphytica. 2010;173:77–84.
  • Fernández-Aparicio M, Flores F, Rubiales D. Escape and true resistance to crenate broomrape (Orobanche crenata Forsk.) in grass pea (Lathyrus sativus L.) germplasm. Field Crop Res. 2012;125:92–97.
  • Badu-Apraku B, Akinwale RO, Fakorede MAB, et al. Relative changes in genetic variability and correlations in an early-maturing maize population during recurrent selection. Theor Appl Genet. 2012;125:1289–1301.
  • Rodenburg J, Bastiaans L. Host-plant defence against Striga spp.: reconsidering the role of tolerance. Weed Res. 2011;51:438–441.
  • Badu-Apraku B, Akinwale RO. Cultivar evaluation and trait analysis of tropical early maturing maize under Striga-infested and Striga-free environments. Field Crop Res. 2011;121:186–194.
  • Fernández-Aparicio M, Flores F, Rubiales D. The effect of Orobanche crenata infection severity in faba bean, field pea, and grass pea productivity. Front Plant Sci. 2016 [cited 2017 Dec 14]; [8 p.]. DOI:10.3389/fpls.2016.01409
  • Yonli D, Traoré H, Sérémé P, et al. Integrated management of Striga hermonthica (Del.) Benth. in sorghum using Fusarium inoculum, host plant resistance and intercropping. J Appl Biosci. 2012;53:3734–3741.
  • Nzioki HS, Oyosi F, Morris CE, et al. Striga biocontrol on a toothpick: a readily deployable and inexpensive method for smallholder farmers. Front Plant Sci. 2016 [cited 2017 Dec 14]; [8 p.]. DOI:10.3389/fpls.2016.01121
  • Avedi EK, Ochieno DMW, Ajanga S, et al. Fusarium oxysporum f. sp. strigae strain Foxy 2 did not achieve biological control of Striga hermonthica parasitizing maize in Western Kenya. Biol Control. 2014;77:7–14.
  • Musyoki MK, Cadisch G, Enowashu E, et al. Promoting effect of Fusarium oxysporum [f.sp. strigae] on abundance of nitrifying prokaryotes in a maize rhizosphere across soil types. Biol Control. 2015;83:37–45.
  • Musyoki MK, Cadisch G, Zimmermann J, et al. Soil properties, seasonality and crop growth stage exert a stronger effect on rhizosphere prokaryotes than the fungal biocontrol agent Fusarium oxysporum f.sp. strigae. Appl Soil Ecol. 2016;105:126–136.
  • Zimmermann J, Musyoki MK, Cadisch G, et al. Biocontrol agent Fusarium oxysporum f.sp. strigae has no adverse effect on indigenous total fungal communities and specific AMF taxa in contrasting maize rhizospheres. Fungal Ecol. 2016;23:1–10.
  • Elzein A, Heller A, Ndambi B, et al. Cytological investigations on colonization of sorghum roots by the mycoherbicide Fusarium oxysporum f. sp. strigae and its implications for Striga control using a seed treatment delivery system. Biol Control. 2010;53:249–257.
  • Rebeka G, Shimelis H, Laing MD, et al. Evaluation of sorghum genotypes compatibility with Fusarium oxysporum under Striga infestation. Crop Sci. 2013;53:385–393.
  • Ndambi B, Cadisch G, Elzein A, et al. Colonization and control of Striga hermonthica by Fusarium oxysporum f. sp. strigae, a mycoherbicide component: An anatomical study. Biol Control. 2011;58:149–159.
  • Aybeke M. Fusarium infection causes genotoxic disorders and antioxidant-based damages in Orobanche spp. Microbiol Res. 2017;201:46–51.
  • Abouzeid MA, El-Tarabily KA. Fusarium spp. suppress germination and parasitic establishment of bean and hemp broomrapes. Phytopathol Mediterr. 2010;49:51–64.
  • Louarn J, Carbonne F, Delavault P, et al. Reduced germination of Orobanche cumana seeds in the presence of arbuscular mycorrhizal fungi or their exudates. PLoS One. 2012 [cited 2017 Dec 14]; [10 p.]. DOI:10.1371/journal.pone.0049273
  • Othira JO, Omolo JO, Wachira FN, et al. Effectiveness of arbuscular mycorrhizal fungi in protection of maize (Zea mays L.) against witchweed (Striga hermonthica Del Benth) infestation. J Agric Biotech Sustain Dev. 2012;4:37–44.
  • López-Ráez JA, Charnikhova T, Fernández I, et al. Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. J Plant Physiol. 2011;168:294–297.
  • Fernández-Aparicio M, García-Garrido JM, Ocampo JA, et al. Colonisation of field pea roots by arbuscular mycorrhizal fungi reduces Orobanche and Phelipanche species seed germination. Weed Res. 2010;50:262–268.
  • Mabrouk Y, Mejri S, Hemissi I, et al. Bioprotection mechanisms of pea plant by Rhizobium leguminosarum against Orobanche crenata. Afr J Microbiol Res. 2010;4:2570–2575.
  • Bouraoui M, Abbes Z, Abdi N, et al. Evaluation of efficient Rhizobium isolates as biological control agents of Orobanche foetida Poir. parasitizing Vicia faba L. minor in Tunisia. Bulg J Agric Sci. 2012;18:557–564.
  • Bouraoui M. Abbes Z, Rouissi M, et al. Effect of rhizobia inoculation, N and P supply on Orobanche foetida parasitising faba bean (Vicia faba minor) under field conditions. Biocontrol Sci Technol. 2016;26:776–791.
  • Hemissi I, Mabrouk Y, Abdi N, et al. Growth promotion and protection against Orobanche foetida of chickpea (Cicer aerietinum) by two Rhizobium strains under greenhouse conditions. Afr J Biotechnol. 2013;12:1371–1377.
  • Mabrouk Y, Belhadj O. Effect of the inoculation of chickpea by rhizobia on growth promotion and protection against Orobanche Crenata. G J B A H S. 2014;3:55–59.
  • Mabrouk Y, Mejri S, Hemissi I, et al. Biochemical analysis of induced resistance in chickpea against broomrape (Orobanche foetida) by rhizobia inoculation. Phytopathol Mediterr. 2016;55:54–61.
  • Fernández-Aparicio M, Rispail N, Prats E, et al. Parasitic plant infection is partially controlled through symbiotic pathways. Weed Res. 2010;50:76–82.
  • Aybeke M, Şen B, Ökten S. Aspergillus alliaceus, a new potential biological control of the root parasitic weed Orobanche. J Basic Microbiol. 2014;54:S93–S101.
  • Mounde LG, Boh MY, Cotter M, et al. Potential of rhizobacteria for promoting sorghum growth and suppressing Striga hermonthica development. J Plant Dis Prot. 2015;122:100–106.
  • Chen J, Xue QH, McErlean CSP, et al. Biocontrol potential of the antagonistic microorganism Streptomyces enissocaesilis against Orobanche cumana. BioControl. 2016;61:781–791.
  • Iasur Kruh L, Lahav T, Abu-Nassar J, et al. Host-parasite-bacteria triangle: the microbiome of the parasitic weed Phelipanche aegyptiaca and tomato-Solanum lycopersicum (Mill.) as a host. Front Plant Sci. 2017 [cited 2017 Dec 14]; [9 p.]. DOI:10.3389/fpls.2017.00269
  • Ma Y, Jia J, An Y, et al. Potential of some hybrid maize lines to induce germination of sunflower broomrape. Crop Sci. 2013;53:260–270.
  • Zhang W, Ma Y, Wang Z, et al. Some soybean cultivars have ability to induce germination of sunflower broomrape. PLoS One. 2013 [cited 2017 Dec 14]; [11 p.]. DOI:10.1371/journal.pone.0059715
  • Cimmino A, Fernández-Aparicio M, Avolio F, et al. Ryecyanatines A and B and ryecarbonitrilines A and B, substituted cyanatophenol, cyanatobenzo[1,3]dioxole, and benzo[1,3]dioxolecarbonitriles from rye (Secale cereale L.) root exudates: novel metabolites with allelopathic activity on Orobanche seed germination and radicle growth. Phytochemistry. 2015;109:57–65.
  • Ye X, Chen J, McErlean CSP, et al. The potential of foxtail millet as a trap crop for sunflower broomrape. Acta Physiol Plant. 2017 [cited 2017 Dec 14]; [11 p.]. DOI:10.1007/s11738-016-2300-x
  • Aksoy E, Arslan ZF, Tetik Ö, et al. Using the possibilities of some trap, catch and Brassicaceaen crops for controlling crenate broomrape a problem in lentil fields. Int J Plant Prod. 2016;10:53–62.
  • Babaei S, Alizadeh H, Jahansouz MR, et al. Management of Phelipanche aegyptiaca Pomel. using trap crops in rotation with tomato (Solanum lycopersicom L.). Aust J Crop Sci. 2010;4:437–442.
  • Fernández-Aparicio M, Rubiales D. Differential response of pea (Pisum sativum) to Orobanche crenata, Orobanche foetida and Phelipanche aegyptiaca. Crop Prot. 2012;31:27–30.
  • Chai M, Zhu X, Cui H, et al. Lily cultivars have allelopathic potential in controlling Orobanche aegyptiaca Persoon. PLoS One. 2015 [cited 2017 Dec 14]; [16 p.]. DOI: 10.1371/journal.pone.0142811
  • Dong SQ, Ma YQ, Wu H, et al. Stimulatory effects of wheat (Triticum aestivum L.) on seed germination of Orobanche minor Sm. Allelopathy J. 2012;30:247–258.
  • Dong SQ, Ma YQ, Wu HW, et al. Allelopathic stimulatory effects of wheat differing in ploidy levels on Orobanche minor germination. Allelopathy J. 2013;31:355–366.
  • Ma Y, Lang M, Dong S, et al. Screening of some cotton varieties for allelopathic potential on clover broomrape germination. Agron J. 2012;104:569–574.
  • Ma YQ, Zhang W, Dong SQ, et al. Induction of seed germination in Orobanche spp. by extracts of traditional Chinese medicinal herbs. Sci China Life Sci. 2012;55:250–260.
  • De Groote H, Vanlauwe B, Rutto E, et al. Economic analysis of different options in integrated pest and soil fertility management in maize systems of Western Kenya. Agric Econ. 2010;41:471–482.
  • Hooper AM, Tsanuo MK, Chamberlain K, et al. Isoschaftoside, a C-glycosylflavonoid from Desmodium uncinatum root exudate, is an allelochemical against the development of Striga. Phytochemistry. 2010;71:904–908.
  • Midega CAO, Pittchar J, Salifu D, et al. Effects of mulching, N-fertilization and intercropping with Desmodium uncinatum on Striga hermonthica infestation in maize. Crop Prot. 2013;44:44–49.
  • Murage AW, Midega CAO, Pittchar JO, et al. Determinants of adoption of climate-smart push-pull technology for enhanced food security through integrated pest management in Eastern Africa. Food Secur. 2015;7:709–724.
  • Khan Z, Midega CAO, Hooper A, et al. Push-pull: chemical ecology-based integrated pest management technology. J Chem Ecol. 2016;42:689–697.
  • Midega CAO, Salifu D, Bruce TJ, et al. Cumulative effects and economic benefits of intercropping maize with food legumes on Striga hermonthica infestation. Field Crop Res. 2014;155:144–152.
  • Hooper AM, Caulfield JC, Hao, B, et al. Isolation and identification of Desmodium root exudates from drought tolerant species used as intercrops against Striga hermonthica. Phytochemistry. 2015;117:380–387.
  • Midega CAO, Bruce TJA, Pickett JA, et al. Climate-adapted companion cropping increases agricultural productivity in East Africa. Field Crop Res. 2015;180:118–125.
  • Murage AM, Pittchar JO, Midega CAO, et al. Gender specific perceptions and adoption of the climate-smart push-pull technology in Eastern Africa. Crop Prot. 2015;76:83–91.
  • Midega CAO, Wasonga CJ, Hooper AM, et al. Drought-tolerant Desmodium species effectively suppress parasitic Striga weed and improve cereal grain yields in Western Kenya. Crop Prot. 2017;98:94–101.
  • Kifuko-Koech M, Pypers P, Okalebo JR, et al. The impact of Desmodium spp. and cutting regimes on the agronomic and economic performance of Desmodium–maize intercropping system in Western Kenya. Field Crop Res. 2012;137:97–107.
  • Pickett JA, Hamilton ML, Hooper AM, et al. Companion cropping to manage parasitic plants. Ann Rev Phytopathol. 2010;48:161–177.
  • Midega CAO, Khan ZR. Integrated management of Striga hermonthica and cereal stemborers in finger millet (Eleusine coracana (L.) Gaertn.) through intercropping with Desmodium intortum. Int J Pest Manage. 2010;56:145–151.
  • Reinhardt CF, Tesfamichael N. Nitrogen in combination with Desmodium intortum effectively suppress Striga asiatica in a sorghum-Desmodium intercropping system. J Agr Rural Develop Trop Subtrop. 2011;112:19–28.
  • Fernández-Aparicio M, Emeran AA, Rubiales D, et al. Inter-cropping with berseem clover (Trifolium alexandrinum) reduces infection by Orobanche crenata in legumes. Crop Prot. 2010;29:867–871.
  • Kim HI, Kisugi T, Khetkam P, et al. Avenaol, a germination stimulant for root parasitic plants from Avena strigosa. Phytochemistry. 2014;103:85–88.
  • Nomura S, Nakashima H, Mizutani M, et al. Structural requirements of strigolactones for germination induction and inhibition of Striga gesnerioides seeds. Plant Cell Rep. 2013;32:829–838.
  • Jamil M, Kanampiu FK, Karaya H, et al. Striga hermonthica parasitism in maize in response to N and P fertilisers. Field Crop Sci. 2012;134:1–10.
  • Jamil M, Charnikhova R, Cardoso C, et al. Quantification of the relationship between strigolactones and Striga hermonthica infection in rice under varying levels of nitrogen and phosphorus. Weed Res. 2011;51:373–385.
  • Jamil M, Van Mourik TA, Charnikhova T, et al. Effect of diammonium phosphate application on strigolactone production and Striga hermonthica infection in three sorghum cultivars. Weed Res. 2012;53:121–130.
  • Zhang M, Ma Y, Zhong W, et al. N–P–K ratio affects exudation of germination stimulants and resistance of tobacco seedlings to broomrapes. Plant Growth Regul. 2015;76:281–288.
  • Yoneyama K, Xie X, Kim HI, et al. How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation ? Planta. 2012;235:1197–1207.
  • Abdul K, Chemining'wa GN, Onwonga RN. Relationships between agronomic practices, soil chemical characteristics and Striga reproduction in dryland areas of Tanzania. J Agric Sci Technol. 2012;2:1134–1141.
  • Kamara AY, Ekeleme F, Jibrin JM, et al. Assessment of level, extent and factors influencing Striga infestation of cereals and cowpea in a Sudan Savanna ecology of Northern Nigeria. Agric Ecosyst Environ. 2014;188:111–121.
  • Ayongwa GC, Stomph TJ, Belder P, et al. Organic matter and seed survival of Striga hermonthica—Mechanisms for seed depletion in the soil. Crop Prot. 2011;30:1594–1600.
  • Ayongwa GC, Stomph TJ, Kuyper TW. Host-parasite dynamics of Sorghum bicolor and Striga hermonthica—The influence of soil organic matter amendments of different C:N ratio. Crop Prot. 2011;30:1613–1622.
  • Ekeleme F, Kamara AY, Omoigui LO, et al. Effect of sowing date on Striga infestation and yield of sorghum (Sorghum bicolor [L.] Moench) cultivars in the Sudan Savanna of northeast Nigeria. Afr J Agric Res. 2011;6:3240–3246.
  • Boz Ö, Doğan MN, Öğüt D. The effect of duration of solarization on controlling branched broomrape (Phelipanche ramosa L.) and some weed species. Julius-Kűhn-Arch. 2012;434:687–693.
  • Lombardo S, Longo AMG, Lo Monaco A, et al. The effect of soil solarization and fumigation on pests and yields in greenhouse tomatoes. Crop Prot. 2012;37:59–64.
  • Mauro RP, Lo Monaco A, Lombardo S, et al. Eradication of Orobanche/Phelipanche spp. seedbank by soil solarization and organic supplementation. Sci Hort. 2015;193:62–68.
  • Eizenberg H, Plakhine D, Ziadne H, et al. Non-chemical control of root parasitic weeds with biochar. Front Plant Sci. 2017 [cited 2017 Dec 14]; [9 p.]. DOI:10.3389/fpls.2017.00939
  • Samejima H, Babiker AG, Takikawa H, et al. Practicality of the suicidal germination approach for controlling Striga hermonthica. Pest Manage Sci. 2016;72:2035–2042.
  • Kgosi RL, Zwanenburg B, Mwakaboko AS, et al. Strigolactone analogues induce suicidal seed germination of Striga spp. in soil. Weed Res. 2012;52:197–203.
  • Zwanenburg B, Mwakaboko AS, Kannan C. Suicidal germination for parasitic weed control. Pest Manage Sci. 2016;72:2016–2025.
  • Kannan C, Zwanenburg B. A novel concept for the control of parasitic weeds by decomposing germination stimulants prior to action. Crop Prot. 2014;61:11–15.
  • Malik H, Kohlen W, Jamil M, et al. Aromatic A-ring analogues of orobanchol, new germination stimulants for seeds of parasitic weeds. Org Biomol Chem. 2011;9:2286–2293.
  • Lachia M, Wolf HC, De Mesmaeker A. Synthesis of strigolactones analogues by intramolecular [2 + 2] cycloaddition of ketene-iminium salts to olefins and their activity on Orobanche cumana seeds. Bioorg Med Chem Lett. 2014;24:2123–2128.
  • Takahashi I, Fukui K, Asami T. Chemical modification of a phenoxyfuranone-type strigolactone mimic for selective effects on rice tillering or Striga hermonthica seed germination. Pest Manage Sci. 2016;72:2048–2053.
  • Fukui K, Yamagami D, Ito S, et al. A taylor-made design of phenoxyfuranone-type strigolactone mimic. Front Plant Sci. 2017 [cited 2017 Dec 14]; [11 p.]. DOI:10.3389/fpls.2017.00936
  • Yao, Z, Tian F, Cao X, et al. Global transcriptomic analysis reveals the mechanism of Phelipanche aegyptiaca seed germination. Int J Mol Sci. 2016 [cited 2017 Dec 14]; [19 p.]. DOI:10.3390/ijms17071139
  • Toh S, Holbrook-Smith D, Stokes ME, et al. Detection of parasitic plant suicide germination compounds using a high-throughput Arabidopsis HTL/KAI2 strigolactone perception system. Chem Biol. 2014;21:988–998.
  • Khosla A, Nelson DC. Strigolactones, super hormones in the fight against Striga. Curr Opin Plant Biol. 2016;33:57–63.
  • Tsuchiya Y, Yoshimura M, Sato Y, et al. Probing strigolactone receptors in Striga hermonthica with fluorescence. Science. 2015;349:864–868.
  • Toh S, Holbrook-Smith D, Stogios PJ, et al. Structure-function analysis identifies highly sensitive strigolactone receptors in Striga. Science. 2015;350:203–207.
  • Joel DM, Chaudhuri SK, Plakhine D, et al. Dehydrocostus lactone is exuded from sunflower roots and stimulates germination of the root parasite Orobanche cumana. Phytochemistry. 2011;72:624–634.
  • Raupp FM, Spring O. New sesquiterpene lactones from sunflower root exudate as germination stimulants for Orobanche cumana. J Agric Food Chem. 2013;61:10481–10487.
  • Ueno K, Furumoto T, Umeda S, et al. Heliolactone, a non-sesquiterpene lactone germination stimulant for root parasitic weeds from sunflower. Phytochemistry. 2014;108:122–128.
  • Evidente A, Cimmino A, Fernández-Aparicio M, et al. Polyphenols, including the new peapolyphenols A-C, from pea root exudates stimulate Orobanche foetida seed germination. J Agric Food Chem. 2010;58:2902–2907.
  • Evidente A, Cimmino A, Fernández-Aparicio M, et al. Soyasapogenol B and trans-22-dehydrocampesterol from common vetch (Vicia sativa L.) root exudates stimulate broomrape seed germination. Pest Manage Sci. 2011;67:1015–1022.
  • Auger B, Pouvreau JB, Pouponneau K, et al. Germination stimulants of Phelipanche ramosa in the rhizosphere of Brassica napus are derived from the glucosinolate pathway. Mol Plant Microbe Interact. 2012;25:993–1004.
  • Tokunaga T, Hayashi H, Akiyama K. Medicaol, a strigolactone identified as a putative didehydro-orobanchol isomer, from Medicago truncatula. Phytochemistry. 2015;111:91–97.
  • Charnikhova TV, Gaus K, Lumbroso A, et al. Zealactones. Novel natural strigolactones from maize. Phytochemistry. 2012;137:123–131.
  • Fernández-Aparicio M, Yoneyama K, Rubiales D. The role of strigolactones in host specificity of Orobanche and Phelipanche seed germination. Seed Sci Res. 2011;21:55–61.
  • Artuso E, Ghibaudi E, Lace B, et al. Stereochemical assignment of strigolactone analogues confirms their selective biological activity. J Nat Prod. 2015;78:2624–2633.
  • Menkir A, Chikoye D, Lum F. Incorporating an herbicide resistance gene into tropical maize with inherent polygenic resistance to control Striga hermonthica (Del.) Benth. Plant Breed. 2010;129:385–392.
  • Chikoye D, Fontem LA, Menkir A. Seed coating herbicide tolerant maize hybrids with imazapyr for Striga hermonthica (Del.) Benth control in the West African savanna. J Food Agric Environ. 2011;9:416–421.
  • Makumbi D, Diallo A, Kanampiu F, et al. Agronomic performance and genotype × environment interaction of herbicide-resistant maize varieties in Eastern Africa. Crop Sci. 2015;55:540–555.
  • Dor E, Smirnov E, Galili S, et al. Characterization of the novel tomato mutant HRT, resistant to acetolactate synthase–inhibiting herbicides. Weed Sci. 2016;64:348–360.
  • Shilo T, Zygier L, Rubin B, et al. Mechanism of glyphosate control of Phelipanche aegyptiaca. Planta. 2016;244:1095–1107.
  • Dor E, Galili S, Smirnov E, et al. The effects of herbicides targeting aromatic and branched chain amino acid biosynthesis support the presence of functional pathways in broomrape. Front Plant Sci. 2017 [cited 2017 Dec 14]; [15 p.]. DOI:10.3389/fpls.2017.00707
  • Shilo T, Rubin B, Plakhine D, et al. Secondary effects of glyphosate action in Phelipanche aegyptiaca: Inhibition of solute transport from the host plant to the parasite. Front Plant Sci. 2017 [cited 2017 Dec 14]; [16 p.]. DOI:10.3389/fpls.2017.00255
  • Eizenberg H, Aly R, Cohen Y. Technologies for smart chemical control of broomrape (Orobanche spp. and Phelipanche spp.). Weed Sci. 2012;60:316–323.
  • Cochavi A, Rubin B, Achdari G, et al. Thermal time model for Egyptian broomrape (Phelipanche aegyptiaca) parasitism dynamics in Carrot (Daucus carota L.): field validation. Front Plant Sci. 2016 [cited 2017 Dec 14]; [11 p.]. DOI:10.3389/fpls.2016.01807
  • Cochavi A, Achdari G, Smirnov E, et al. Egyptian broomrape (Phelipanche aegyptiaca) management in carrot under field conditions. Weed Technol. 2015;29:519–528.
  • Cochavi A, Rubin B, Smirnov E, et al. Factors affecting Egyptian broomrape (Orobanche aegyptiaca) control in carrot. Weed Sci. 2016;64:321–330.
  • Moral J, Lozano-Baena MD, Rubiales D. Temperature and water stress during conditioning and incubation phase affecting Orobanche crenata seed germination and radicle growth. Front Plant Sci. 2015 [cited 2017 Dec 14]; [10 p.]. DOI:10.3389/fpls.2015.00408
  • Abbes Z, Mkadmi M, Trabelsi I, et al. Orobanche foetida control in faba bean by foliar application of benzothiadiazole (BTH) and salicylic acid. Bulg J Agric Sci. 2014;20:1439–1443.
  • Yang C, Hu LY, Ali B, et al. Seed treatment with salicylic acid invokes defence mechanism of Helianthus annuus against Orobanche cumana. Ann Appl Biol. 2016;169:408–422.
  • Jamil M, Charnikhova T, Verstappen F, et al. Carotenoid inhibitors reduce strigolactone production and Striga hermonthica infection in rice. Arch Biochem Biophys. 2010;504:123–131.
  • Ito S, Umehara M, Hanada A, et al. Effects of triazole derivatives on strigolactone levels and growth retardation in rice. PLoS One. 2011 [cited 2017 Dec 14]; [5 p.]. DOI:10.1371/journal.pone.0021723
  • Seto Y, Kameoka H, Yamaguchi S, et al. Recent advances in strigolactone research: chemical and biological aspects. Plant Cell Physiol. 2012;53:1843–1853.
  • Ito S, Yamagami D, Umehara M, et al. Regulation of strigolactone biosynthesis by gibberellin signalling. Plant Physiol. 2017;174:1250–1259.
  • Fukui K, Ito S, Asami T. Selective mimics of strigolactone actions and their potential use for controlling damage caused by root parasitic weeds. Mol Plant. 2013;6:88–99.
  • Kannan C, Aditi P, Zwanenburg, B. Quenching the action of germination stimulants using borax and thiourea, a new method for controlling parasitic weeds: a proof of concept. Crop Prot. 2015;70:92–98.
  • Wakabayashi, T, Joseph B, Yasumoto S, et al. Planteose as a storage carbohydrate required for early stage of germination of Orobanche minor and its metabolism as a possible target for selective control. J Exp Bot. 2015;66:3085–3097.
  • Castillejo MA, Fernández-Aparicio M, Rubiales D. Proteomic analysis by two-dimensional differential in gel electrophoresis (2D DIGE) of the early response of Pisum sativum to Orobanche crenata. J Exp Bot. 2012;63:107–119.
  • Nativ N, Hacham Y, Hershenhorn J, et al. Metabolic investigation of Phelipanche aegyptiaca reveals significant changes during developmental stages and in its different organs. Front Plant Sci. 2017 [cited 2017 Dec 14]; [13 p.]. DOI:10.3389/fpls.2017.00491
  • Westwood JH, dePamphilis CW, Das M, et al. The parasitic plant genome project: new tools for understanding the biology of Orobanche and Striga. Weed Sci. 2012;60:295–306.
  • Holbrook-Smith D, Toh S, Tsuchiya Y, et al. Small-molecule antagonists of germination of the parasitic plant Striga hermonthica. Nat Chem Biol. 2016;12:724–729.
  • Venezian A, Dor E, Achdari G, et al. The influence of the plant growth regulator maleic hydrazide on Egyptian broomrape early developmental stages and its control efficacy in tomato under greenhouse and field conditions. Front Plant Sci. 2017 [cited 2017 Dec 14]; [12 p.]. DOI:10.3389/fpls.2017.00691
  • Fernández-Aparicio M, Bernard A, Falchetto L, et al. Investigation of amino acids as herbicides for control of Orobanche minor parasitism in red clover. Front Plant Sci. 2017 [cited 2017 Dec 14]; [12 p.]. DOI:10.3389/fpls.2017.00842
  • Prider J, Williams A. Using dazomet to reduce broomrape seed banks in soils with low moisture content. Crop Prot. 2014;59:43–50.
  • Yoshida S, Cui S, Ichihashi Y, et al. The haustorium, a specialized invasive organ in parasitic plants. Ann Rev Plant Biol. 2016;67:643–667.
  • Alakonya A, Kumar R, Koenig D, et al. Interspecific RNA interference of SHOOT MERISTEMLESS-like disrupts Cuscuta pentagona plant parasitism. Plant Cell. 2012;24:3153–3166.
  • Bandaranayake PCG, Yoder JI. Trans-specific gene silencing of acetyl-CoA carboxylase in a root-parasitic plant. Mol Plant Microbe Interact. 2013;26:575–584.
  • Kirigia D, Runo S, Alakonya A. A virus-induced gene silencing (VIGS) system for functional genomics in the parasitic plant Striga hermonthica. Plant Methods. 2014 [cited 2017 Dec 14]; [8 p.]. DOI:10.1186/1746-4811-10-16
  • Tesso TT, Ejeta G. Integrating multiple control options enhances Striga management and sorghum yield on heavily infested soils. Agron J. 2011;103:1464–1471.
  • Ayongwa GC, Stomph TJ, Hoevers R, et al. Striga infestation in Northern Cameroon: magnitude, dynamics and implications for management. NJAS Wageningen J Life Sci. 2010;57:159–165.
  • Rodenburg J, Demont M, Zwart SJ, et al. Parasitic weed incidence and related economic losses in rice in Africa. Agric Ecosyst Environ. 2016;235:306–317.
  • Lyra D, Kalivas D, Economou G. A large-scale analysis of soil and bioclimatic factors affecting the infestation level of tobacco (Nicotiana tabacum L.) by Phelipanche species. Crop Prot. 2016;83:27–36.
  • Atera EA, Itoh K, Azuma T, et al. Farmers’ perspectives on the biotic constraint of Striga hermonthica and its control in Western Kenya. Weed Biol Manage. 2012;12:53–62.
  • Rodenburg J, Schut M, Demont M, et al. Systems approaches to innovation in pest management: reflections and lessons learned from an integrated research program on parasitic weeds in rice. Int J Pest Manage. 2015;61:329–339.
  • De Groote H, Rutto E, Odhiambo G, et al. Participatory evaluation of integrated pest and soil fertility management options using ordered categorical data analysis. Agric Syst. 2010;103:233–244.
  • Gebretsadik, R, Shimelis H, Laing MD, et al. A diagnostic appraisal of the sorghum farming system and breeding priorities in Striga infested agro-ecologies of Ethiopia. Agric Syst. 2014;123:54–61.