1,991
Views
17
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

Isolation, identification, and fenvalerate-degrading potential of Bacillus licheniformis CY-012

, , , , , & show all
Pages 574-582 | Received 07 May 2017, Accepted 05 Feb 2018, Published online: 10 Feb 2018

References

  • Giri S, Sharma GD, Giri A, et al. Fenvalerate-induced chromosome aberrations and sister chromatid exchanges in bone marrow cells of mice in vivo. Mutat Res. 2002;520:125–132.
  • Antwi FB, Reddy GVP. Toxicological effects of pyrethroids onnon-target aquatic insects. Environ Toxicol Pharmacol. 2015;40:915–923.
  • Desneux N, Decourtye A, Delpuech JM. The sublethal effects of pesticides on beneficial arthropods. Ann Rev Entomol. 2007;52:81–106.
  • Decourtye A, Devillers J, Genecque E, et al. Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch Environ Contam Toxicol. 2005;48:242–250.
  • Das R, Das SJ, Das AC. Effect of synthetic pyrethroid insecticides on N2-fixation and its mineralization in tea soil. Eur J Soil Biol. 2016;74:9–15.
  • Kolaczinski JH, Curtis CF. Chronic illness as a result of low-level exposure to synthetic pyrethroid insecticides: A review of the debate. Food Chem Toxicol. 2004;42:697–706.
  • Ye XQ, Xiong K, Liu J. Comparative toxicity and bioaccumulation of fenvalerate and esfenvalerate to earthworm Eisenia fetida. J Hazard Mater. 2016;310:82–88.
  • Nesser GAA, Abdelbagi AO, Hammad AMA, et al. Levels of pesticides residues in the White Nile water in the Sudan. Environ Monit Assess. 2016 [cited 2018 Feb 02];188:374. DOI:10.1007/s10661-016-5367-3
  • Cycoń M, Piotrowska-Seget Z. Pyrethroid-degrading microorganisms and their potential for the bioremediation of contaminated soils: a review. Front Microbiol. 2016 [cited 2018 Feb 02];7:1463. DOI:10.3389/fmicb.2016.01463
  • Bhatt P, Sharma A, Gangola S, et al. Novel pathway of cypermethrin biodegradation in a Bacillus sp. strain SG2 isolated from cypermethrin-contaminated agriculture field. 3 Biotech. 2016 [cited 2018 Feb 02];6:45. DOI:10.1007/s13205-016-0372-3
  • Tallur PN, Megadi VB, Ninnekar HZ. Biodegradation of cypermethrin by Micrococcus sp. strain CPN1. Biodegradation. 2008;19:77–82.
  • Guo P, Wang BZ, Hang BJ, et al. Pyrethroid degrading Sphingobium sp. JZ-2 and the purification and characterization of a novel pyrethroid hydrolase. Int Biodeterior Biodegradation. 2009;63:1107–1112.
  • Zhu YT, Li JL, Yao K, et al. Degradation of 3-phenoxybenzoic acid by a filamentous fungus Aspergillus oryzae M-4 strain with self-protection transformation. Appl Microbiol Biot. 2016;100:9773–9786.
  • Tang AX, Wang BW, Liu YY, et al. Biodegradation and extracellular enzymatic activities of Pseudomonas aeruginosa strain GF31 on β-cypermethrin. Environ Sci Pollut R. 2015;22:13049–13057.
  • Gill KK, Sandhu HS, Kaur R. Evaluation of lipid peroxidation and antioxidant status on fenvalerate, nitrate and their co-exposure in Bubalus bubalis. Pesticide Biochem Physiol. 2015;123:19–23.
  • Yu FB, Shan SD, Luo LP, et al. Isolation and characterization of a Sphingomonas sp. strain F-7 degrading fenvalerate and its use in bioremediation of contaminated soil. J Environ Sci Heal B. 2013;48:198–207.
  • Birolli WG, Borges EM, Nitschke M, et al. Biodegradation pathway of the pyrethroid pesticide esfenvalerate by bacteria from different biomes. Water Air Soil Poll. 2016 [cited 2018 Feb 02];227:271. DOI:10.1007/s11270-016-2968-y
  • Garrity GM, Bell JA, Lilburn TG. Taxonomic outline of the prokaryotes. Bergey's manual of systematic bacteriology. 2nd ed. New York (NY): Elsevier Academic Press; 2003.
  • Tang J, Yao K, Liu SL, et al. Biodegradation of 3-phenoxybenzoic acid by a novel Sphingomonas sp. SC-1. Fresenius Environ Bull. 2013;22:1564–1572.
  • Ghevariya CM, Bhatt JK, Dave BP. Enhanced chrysene degradation by halotolerant Achromobacter xylosoxidans using response surface methodology. Bioresour Technol. 2011;102:9668–9674.
  • Chen SH, Luo JJ, Hu MY, et al. Enhancement of cypermethrin degradation by a coculture of Bacillus cereus ZH-3 and Streptomyces aureus HP-S-01. Bioresour Technol. 2012;110:97–104.
  • Gao Y, Chen SH, Hu MY, et al. Purification and characterization of a novel chlorpyrifos hydrolase from Cladosporium cladosporioides Hu-01. PLoS One. 2012 [cited 2018 Feb 02];7:e38137. DOI:10.1371/journal.pone.0038137
  • Zhai Y, Li K, Song JL, et al. Molecular cloning, purification and biochemical characterization of a novel pyrethroid-hydrolyzing carboxylesterase gene from Ochrobactrum anthropi YZ-1. J Hazard Mater. 2012;221–222:206–212.
  • Zu L, Li GY, An TC, et al. Biodegradation kinetics and mechanism of 2,4,6-tribromophenol by Bacillus sp. GZT: a phenomenon of xenobiotic methylation during debromination. Bioresour Technol. 2012;110:153–159.
  • Sundaram S, Das MT, Thakur IS. Biodegradation of cypermethrin by Bacillus sp. in soil microcosm and in-vitro toxicity evaluation on human cell line. Int Biodeterior Biodegradation. 2013;77:39–44.
  • Liu FF, Chi YL, Wu S, et al. Simultaneous degradation of cypermethrin and its metabolite, 3-phenoxybenzoic acid, by the cooperation of Bacillus licheniformis B-1 and Sphingomonas sp. SC-1. Agric Food Chem. 2014;62:8256–8262.
  • Chen S, Dong YH, Chang C, et al. Characterization of a novel cyfluthrin-degrading bacterial strain Brevibacterium aureum and its biochemical degradation pathway. Bioresour Technol. 2013;132:16–23.
  • Wan SG, Li GY, An TC, et al. Biodegradation of ethanethiol in aqueous medium by a new Lysinibacillus sphaericus strain RG-1 isolated from activated sludge. Biodegradation. 2010;21:1057–1066.
  • Yang ZH, Ji GD. Quantitative response relationships between degradation rates and functional genes during the degradation of beta-cypermethrin in soil. J Hazard Mater. 2015;299:719–724.
  • Xiao Y, Chen SH, Gao YQ, et al. Isolation of a novel beta-cypermethrin degrading strain Bacillus subtilis BSF01 and its biodegradation pathway. Appl Microbiol Biot. 2014;99:2849–2859.
  • Wang BZ, Guo P, Hang BJ, et al. Cloning of a novel pyrethroid-hydrolyzing carboxylesterase gene from Sphingobium sp. strain JZ-1 and characterization of the gene product. Appl Environ Microbiol. 2009;75:5496–5500.
  • Lin QS, Chen SH, Hu MY, et al. Biodegradation of cypermethrin by a newly isolated actinomycetes HU-S-01 from wastewater sludge. Int J Environ Sci Technol. 2011;8:45–56.
  • Zhao JY, Chi YL, Xu YC, et al. Co-metabolic degradation of β-cypermethrin and 3-phenoxybenzoic acid by co-culture of Bacillus licheniformis B-1 and Aspergillus oryzae M-4. Plos One. 2016 [cited 2018 Feb 02];11:e0166796. DOI:10.1371/journal.pone.0166796
  • Topp E, Akhtar MH. Identification and characterization of a Pseudomonas strain capable of metabolizing phenoxybenzoates. Appl Environ Microbiol. 1991;57:1294–1300.
  • Zhou WG, Guo WB, Zhou HB, et al. Phenol degradation by Sulfobacillus acidophilus TPY via the meta-pathway. Microbiol Res. 2016;190:37–45.
  • Wang Y, Chen H, Liu YX, et al. An adsorption-release-biodegradation system for simultaneous biodegradation of phenol and ammonium in phenol-rich wastewater. Bioresource Technol. 2016;211:711–719.
  • Wang GY, Wen JP, Yu GH, et al. Anaerobic biodegradation of phenol by Candida albicans PDY-07 in the presence of 4-chlorophenol. World J Microbiol Biotechnol. 2008;24:2685–2691.