2,657
Views
1
CrossRef citations to date
0
Altmetric
Article; Food Biotechnology

Genetic diversity of food originated Salmonella isolates

, , &
Pages 638-645 | Received 29 Jun 2017, Accepted 09 Mar 2018, Published online: 21 Mar 2018

References

  • Crump JA, Luby SP, Mintz ED. The global burden of typhoid fever. Bull World Health Org. 2004;82:346–353.
  • Majowicz SE, Musto J, Scallan E, et al. The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infec Dis. 2010;50:882–889.
  • Barrow PA, Methner U. Salmonella in domestic animals. UK: CABI; 2013.
  • Yan SS, Pendrak ML, Abela-Ridder B, et al. An overview of Salmonella typing public health perspectives. Clin Appl Immunol Rev. 2003;4:189–204.
  • Turki Y, Mehri I, Fhoula I, et al. Comparison of five molecular subtyping methods for differentiation of Salmonella Kentucky isolates in Tunisia. World J Microbiol Biotechnol. 2014;30:87–98.
  • Cai HY, Archambault M, Gyles CL, et al. Molecular genetic methods in veterinary clinical bacteriology laboratory: current usage and future applications. Animal Health Res. 2003;4:73–93.
  • Li W, Raoult D, Fournier P. Bacterial strain typing in the genomic era. FEMS Microbiol Rev. 2009;33:892–916.
  • Levin RE. The use of molecular methods for detecting and discriminating Salmonella associated with foods-a review. Food Biotechnol. 2009;23:313–367.
  • Gallegos-Robles MA, Morales-Loredo A, Alvarez-Ojeda G, et al. Identification of Salmonella serotypes isolated from cantaloupe and chile pepper production systems in Mexico by PCR–restriction fragment length polymorphism. J Food Protect. 2008;71:2217–2222.
  • Khaki P, Bidhendi SM, Ezatpanah E. PCR–RFLP of isolated Salmonella from poultry with Sau3AI and HhaI restriction endonucleases in Arak. Int J Mol Clin Microbiol. 2013;1:255–260.
  • Chen Y, Son I. DNA methods in food safety: molecular typing of foodborne and waterborne bacterial pathogens: polymerase chain reaction-based subtyping methods. UK: Wiley; 2014.
  • Gunel E, Kilic GP, Bulut E, et al. Salmonella surveillance on fresh produce in retail in Turkey. Int J of Food Microbiol. 2015;199:72–77.
  • Oliveira SD, Bessa MC, Santos LR, et al. Phenotypic and genotypic characterization of Salmonella Enteritidis isolates. B J Microbiol. 2007;38:720–728.
  • Kerouanton A, Marault M, Lailler R, et al. Pulsedfield gel electrophoresis subtyping database for foodborne Salmonella enterica serotype discrimination. Foodborne Pathog Dis. 2007;4:293–303.
  • Zou W, Chen HC, Hise KB, et al. Meta-Analysis of pulsed-field gel electrophoresis fingerprints based on a constructed Salmonella database. PLoS ONE. 2013;8:e59224.
  • Ozdemir K, Acar S. Plasmid profile and pulsed–field gel electrophoresis analysis of Salmonella enterica isolates from humans in Turkey. PLoS ONE. 2014;9:e95976.
  • Threlfall EJ, Hampton MD, Ward LR, et al. Pulsed field gel electrophoresis identifies an outbreak of Salmonella enterica serotype Montevideo infection associated with a supermarket hot food outlet. Commun Dis Public Health. 1999;2:207–209.
  • Sivapalasingam S, Barrett E, Kimura A, et al. A multistate outbreak of Salmonella enterica serotype Newport infection linked to mango consumption: impact of water-dip disinfestation technology. Clin Infect Dis. 2003;37:1585–1590.
  • Dionisi AM, Carattoli A, Luzzi I, et al. Molecular genotyping of Salmonella enterica Abortusovis by pulsed field gel electrophoresis. Vet Microbiol. 2006;116:217–223.
  • Best EL, Hampton MD, Ethelberg S, et al. Drug-resistant Salmonella Typhimurium DT 120: use of PFGE and MLVA in a putative international outbreak investigation. Microb Drug Resist. 2009;15:133–138.
  • Wattiau P, Boland C, Bertrand S. Methodologies for Salmonella enterica subsp. Enterica subtyping: gold standards and alternatives. App Environ Microbiol. 2011;77:7877–7885.
  • Herschleb J, Ananiev G, Schwartz DC. Pulsed-field gel electrophoresis. Nat Protoc. 2007;2:677–684.
  • Yıldırım IH, Yıldırım SC, Koçak N. Molecular methods for bacterial genotyping and analyzed gene regions. J Microbiol Infect Dis. 2011;1:42–46.
  • Gutell RR, Larsen N, Woese CR. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev. 1994;58:10–26.
  • Luz SP, Rodríguez-Valera F, Lan R, et al. Variation of the ribosomal operon 16S-23S gene spacer region in representatives of Salmonellaenterica subspecies. J Bacteriol. 1998;180:2144–2151.
  • Lin CK, Tsen HY. Use of two 16S DNA targeted oligonucleotides as PCR primers for the specific detection of Salmonella in foods. J Appl Bacteriol. 1996;80:659–666.
  • Trkov M, Avguštin G. An improved 16S rRNA based PCR method for the specific detection of Salmonella enterica. Int J Food Microbiol. 2003;80:67–75.
  • Malorny B, Hoorfar J, Bunge C, et al. Multicenter validation of the analytical accuracy of Salmonella PCR: towards an international standard. Appl Environ Microb. 2003;69:290–296.
  • Kim T-H, Hwang HJ, Kim JH. Development of a novel, rapid multiplex polymerase chain reaction assay for the detection and differentiation of Salmonella enterica Serovars Enteritidis and Typhimurium using ultra-fast convection polymerase chain reaction. Foodborne Pathog Dis. 2017;14:580–586.
  • Anukampa, Shagufta B, Sivakumar M. Antimicrobial resistance and typing of Salmonella isolated from street vended foods and associated environment. J Food Sci Technol. 2017;54:2532–2539.
  • van Asten Alphons JAM, Dijk JE. Distribution of “classic” virulence factors among Salmonella spp. FEMS Immunol Med Microbiol. 2005;44:251–259.
  • Jamshidi A, Bassami MR, Afshari NS. Identification of Salmonella spp. and Salmonella Typhimurium by a multiplex PCR-based assay from poultry carcasses in Mashhad-Iran. Iran J Vet Med. 2009;3:43–48.
  • Taskale N, Akcelik M. Use of RAPD-PCR, plasmid profiling, class 1 integron analysis, and antimicrobial resistance for molecular characterization of Salmonella strains isolated from Turkey. Acta Aliment. 2012;41:56–66.
  • Ribot EM, Fair MA, Gautom R, et al. Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella and Shigella for PulseNet. Foodborne Pathog Dis. 2006;3:59–67.
  • Hunter SB, Vauterin P, Lambert-Fair MA, et al. Establishment of a universal size standard strain for use with the PulseNet standardized pulsed-field gel electrophoresis protocols: converting the national databases to the new size standard. J Clin Microbiol. 2005;43:1045–1050.
  • Ai ZX, Mei BX, Yun YC, et al. Establishment and comparison of pulsed-field gel electrophoresis, multiple-locus variable number tandem repeat analysis and automated ribotyping methods for subtyping of Citrobacter strains. Biomed Environ Sci. 2012;25:653–662.
  • Wilson K. Currents protocol of molecular biology: preparation of genomic DNA from bacteria. UK: Wiley; 1987.
  • Lagatolla C, Dolzani L, Tonin E, et al. PCR ribotyping for characterizing Salmonella isolates of different serotypes. J Clin Microbiol. 1996;34:2440–2443.
  • Goodfellow M, Stackebrandt E. Nucleic acid techniques in bacterial systematics: 16S/23S rRNA sequencing. USA: Wiley; 1991.
  • Swamy SC, Barnhart HM, Lee MD, et al. Virulence determinants invA and spvC in Salmonellae isolated from poultry products, wastewater and human sources. Appl Environ Microbiol. 1996;62:3768–3771.
  • Cortez AL, Carvalho AC, Ikuno AA, et al. Identification of Salmonella spp. isolates from chicken abattoirs by multiplex-PCR. Res Vet Sci. 2006;81:340–344.
  • Sneath PHA, Sokal RR. Numerical taxonomy: the principles and practice of numerical classification. USA: Freeman & Co.; 1973.
  • Rohlf FJ. NTSYS-pc. Numerical taxonomy and multivariate analysis system, version 1.8. Setauket, NY, USA: Exeter Publishing; 1993.
  • Moradi Bidhendi S, Alaei F, Khaki P, et al. Identification of avian Salmonella isolates by PCR-RFLP analysis of a fliC gene fragment. Arch Razi Inst. 2015;70:1–6.
  • Sumithra TG, Chaturvedi VK, Gupta PK, et al. PCR-RFLP analysis of fliC, fimH and 16S rRNA genes in Salmonella Typhimurium isolates of varied origin. Ann Microbiol. 2014;64:177–183.
  • Jong HY, Pak TS, Pannatee S, et al. PCR-based restriction fragment length polymorphism for subtyping of Salmonella from chicken isolates. Nat Sci. 2010;44:79–83.
  • Zakı S, Abd-El-Haleem D, El-Helow E, et al. Molecular and biochemical diagnosis of Salmonella in wastewater. J Appl Sci Environ Manage. 2009;13:83–92.
  • Wassenaar TM, Newell DG. Genotyping of Campylobacter spp. Appl Environ Microbiol. 2000;66:1–9.
  • Salehi TZ, Mahzounieh M, Saeedzadeh A. Detection of invA gene in isolated Salmonella from broilers by PCR method. Int J Poult Sci. 2005;4:557–559.
  • Amini K, Salehi TZ, Nikbakht G, et al. Molecular detection of invA and spv virulence genes in Salmonella enteritidis isolated from human and animals in Iran. Afr J Microbiol Res. 2010;4:2202–2210.
  • Jeníková G, Pazlarová J, Demnerová K. Detection of Salmonella in food samples by the combination of immunomagnetic separation and PCR assay. Int Microbiol. 2010;3:225–229.
  • Shanmugasamy M, Velayutham T, Rajeswar J. InvA gene specific PCR for detection of Salmonella from broilers. Vet World. 2011;4:562–564.
  • Das A, Hari SS, Shalini U, et al. Molecular screening of virulence genes from Salmonella enterica isolated from commercial food stuffs. Biosci Biotechnol Res Asia. 2012;9:363–369.
  • Ashraf AAET, Ahmed MA, Aisha RA, et al. Detection of common (invA) gene in Salmonella isolated from poultry using polymerase chain rection technique. Benha Vet Med J. 2013;25:70–77.
  • El-Feky MA, Hassan MA, Mohamed WA, et al. Detection of InvA gene in non typhoidal Salmonella isolated from food products and clinical cases. Egypt J Med Microbiol. 2014;23:33–41.
  • Osman KM, Elhariri M, Amin ZM, et al. Consequences to international trade of chicken hatchlings: Salmonella enterica and its public health implications. Int J Adv Res. 2014;2:45–63.
  • Chaudhary JH, Nayak JB, Brahmbhatt MN, et al. Virulence genes detection of Salmonella serovars isolated from pork and slaughterhouse environment in Ahmedabad, Gujarat. Vet World. 2015;8:121–124.
  • Makwana PP, Nayak JB, Brahmbhatt MN, et al. Detection of Salmonella spp. from chevon, mutton and its environment in retail meat shops in Anand city (Gujarat), India Vet World. 2015;8:388–392.
  • Moussa IM, Aleslamboly YS, Al-Arfaj AA, et al. Molecular characterization of Salmonella virulence genes isolated from different sources relevant to human health. J Food Agric Environ. 2013;11:197–201.
  • Maysa AIA, Abd-Elall AMM. Diversity and virulence associated genes of Salmonella enterica serovars isolated from wastewater agricultural drains, leafy green producing farms, cattle and human along their courses. Rev Medecine Vet-Toulouse. 2015;166:96–106.
  • Ziemer CJ, Steadham SR. Evaluation of the specificity of Salmonella PCR primers using various intestinal bacterial species. Lett Appl Microbiol. 2003;37:463–469.
  • Gophna U, Ron EZ, Graur D. Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene. 2003;312:151–163.
  • Worrall LJ, Vuckovic M, Strynadka NC. Crystal structure of the C-terminal domain of the Salmonella type III secretion system export apparatus protein InvA. Protein Sci. 2010;19:1091–1096.
  • Ochman H, Lawrence JG, Groisman, EA. Lateral gene transfer and the natüre of bacterial innovation. Nature. 2000;405:299–304.