3,681
Views
22
CrossRef citations to date
0
Altmetric
Review; Agriculture and Environmental Biotechnology

Critical multifunctional role of the betaine aldehyde dehydrogenase gene in plants

ORCID Icon, , ORCID Icon, , & ORCID Icon
Pages 815-829 | Received 25 Aug 2017, Accepted 17 May 2018, Published online: 28 May 2018

References

  • Matin R, Ebrahimi MA, Niazi A. Quantitative expression analysis of P5CS and BADH genes in cultivated Wheat Plants under Salt and ABA treatments. Iranian J Genet Plant Breed. 2014;3:43–48.
  • Pan SM, Moreau RA, Yu C, et al. Betaine accumulation and betaine-aldehyde dehydrogenase in spinach leaves. Plant Physiol. 1981;67:1105–1108.
  • Weretilnyk EA, Hanson AD. Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought. Proc Natl Acad Sci U S A. 1990;87:2745–2749.
  • Fitzgerald TL, Waters DL, Henry RJ. Betaine aldehyde dehydrogenase in plants. Plant Biol. 2008;11:119–130.
  • Bradbury LM, Fitzgerald TL, Henry RJ, et al. The gene for fragrance in rice. Plant Biotechnol J. 2005;3:363–370.
  • Weigel P, Weretilnyk EA, Hanson AD. Betaine aldehyde oxidation by spinach chloroplasts. Plant Physiol. 1986;82:753–759.
  • Arikit S, Yoshihashi T, Wanchana S, et al. Deficiency in the amino aldehyde dehydrogenase encoded by GmAMADH2, the homologue of rice Os2AP, enhances 2-acetyl-1-pyrroline biosynthesis in soybeans (Glycine max L.). Plant Biotechnol J. 2011;9:75–87.
  • Fujiwara T, Hori K, Ozaki K, et al. Enzymatic characterization of peroxisomal and cytosolic betaine aldehyde dehydrogenases in barley. Physiol Plant. 2008;134:22–30.
  • Shrestha K. Analysis of betaine aldehyde dehydrogenase encoding genes in wheat [MSc thesis]. Lismore (NSW): Southern Cross University; 2011.
  • Wang YB, Guan LL, Xu YW, et al. Cloning and sequence analysis of the safflower betaine aldehyde dehydrogenase gene. Genet Mol Res. 2014;13:344–353.
  • Bradbury LM, Gillies SA, Brushett DJ, et al. Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice. Plant Mol Biol. 2008;68:439–449.
  • Arakawa K, Katayama M, Takabe T. Levels of betaine and betaine aldehyde dehydrogenase activity in the green leaves, and etiolated leaves and roots of barley. Plant Cell Physiol. 1990;31:797–803.
  • Trossat C, Rathinasabapathi B, Hanson AD. Transgenically expressed betaine aldehyde dehydrogenase efficiently catalyzes oxidation of dimethylsulfoniopropionaldehyde and [omega]-aminoaldehydes. Plant Physiol. 1997;113:1457–1461.
  • Brauner F, Šebela M, Snégaroff J, et al. Pea seedling aminoaldehyde dehydrogenase: primary structure and active site residues. Plant Physiol Bioch. 2003;41:1–10.
  • Missihoun TD, Schmitz J, Klug R. Betaine aldehyde dehydrogenase genes from Arabidopsis with different sub-cellular localization affect stress responses. Planta. 2011;233:369–382.
  • Niu X, Zhang W, Lu BR, et al. An unusual posttranscriptional processing in two betaine aldehyde dehydrogenase loci of cereal crops directed by short, direct repeats in response to stress conditions. Plant Physiol. 2007;143:1929–1942.
  • Fitzgerald TL, Waters DLE, Henry RJ. The effect of salt on betaine aldehyde dehydrogenase transcript levels and 2-acetyl-1-pyrroline concentration in fragrant and non-fragrant rice (Oryza sativa). Plant Sci. 2008;175:539–546.
  • Fitzgerald MA, McCouch SR, Hall RD. Not just a grain of rice: the quest for quality. Trends Plant Sci. 2009;14:133–139.
  • Yang C, Zhou Y, Fan J, et al. SpBADH of the halophyte Sesuvium portulacastrum strongly confers drought tolerance through ROS scavenging in transgenic Arabidopsis. Plant Physiol Bioch. 2015;96:377–387.
  • Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotech. 2006;16:123–132.
  • Zingaretti S, Demore P, Morceli T, et al. Glycine betaine biosynthesis genes differentially expressed in sugarcane under water stress. BMC Proceedings. [cited 2017 Oct 29] 2014;8:P123. [2 p.] DOI:10.1186/1753-6561-8-S4-P123
  • Liu H, Yu C, Li H, et al. Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Sci. 2015;231:198–211.
  • Sinha AK, Jaggi M, Raghuram B, et al. Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signaling Behave. 2011;6:196–203.
  • Bartels D, Sunkar R. Drought and salt tolerance in plants. Crit Rev Plant Sci. 2005;24:23–58.
  • Ashraf M, Foolad M. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot. 2007;59:206–216.
  • Yu HQ, Wang YG, Yong TM, et al. Heterologous expression of betaine aldehyde dehydrogenase gene from Ammopiptanthus nanus confers high salt and heat tolerance to Escherichia coli. Gene. 2014;549:77–84.
  • Legaria J, Rajsbaum R, Munoz-Clares R, et al. Molecular characterization of two genes encoding betaine aldehyde dehydrogenase from amaranth. Expression in leaves under short-term exposure to osmotic stress or abscisic acid. Gene. 1998;218:69–76.
  • Jia GX, Zhu ZQ, Chang FQ, et al. Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell Rep. 2002;21:141–146.
  • Li QL, Gao XR, Yu XH, et al. Molecular cloning and characterization of betaine aldehyde dehydrogenase gene from Suaeda liaotungensis and its use in improved tolerance to salinity in transgenic tobacco. Biotechnol Lett. 2003;25:1431–1436.
  • Zhang N, Si HJ, Wen G, et al. Enhanced drought and salinity tolerance in transgenic potato plants with a BADH gene from spinach. Plant Biotechnol Rep. 2011;5:71–77.
  • Yan LP, Liu CL, Liang HM, et al. Physiological responses to salt stress of T2 alfalfa progenies carrying a transgene for betaine aldehyde dehydrogenase. Plant Cell Tissue Org Cult (PCTOC). 2012;108:191–199.
  • Amarawathi Y, Singh R, Singh AK, et al. Mapping of quantitative trait loci for basmati quality traits in rice (Oryza sativa L.). Mol Breed. 2008;21:49–65.
  • Golestan Hashemi FS, Rafii M, Ismail MR, et al. Opportunities of marker-assisted selection for rice fragrance through marker–trait association analysis of microsatellites and gene-based markers. Plant Biol. 2015;17:953–961.
  • Shi W, Yang Y, Chen S, et al. Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Mol Breed. 2008;22:185–192.
  • Wakte KV, Kad TD, Zanan RL, et al. Mechanism of 2-acetyl-1-pyrroline biosynthesis in Bassia latifolia Roxb. flowers. Physiol Mol Biol Plants. 2011;17:231–237.
  • Gaur A, Wani S, Pandita D, et al. Understanding the fragrance in rice. J Rice Res. [cited 2017 Oct 29] 2016;4:1000e125. [4 p.] DOI:10.4172/2375-4338.1000e125
  • Lorieux M, Petrov M, Huang N, et al. Aroma in rice: genetic analysis of a quantitative trait. Theor Appl Genet. 1996;93:1145–1151.
  • Jin Q, Waters D, Cordeiro GM, et al. A single nucleotide polymorphism (SNP) marker linked to the fragrance gene in rice (Oryza sativa L.). Plant Sci. 2003;165:359–364.
  • Golestan Hashemi FS, Rafii M, Ismail MR, et al. The genetic and molecular origin of natural variation for the fragrance trait in an elite Malaysian aromatic rice through quantitative trait loci mapping using SSR and gene-based markers. Gene. 2015;555:101–107.
  • Vemireddy R, Noor S, Satyavathi V, et al. Discovery and mapping of genomic regions governing economically important traits of Basmati rice. BMC Plant Biol. [cited 2017 Oct 29] 2015;15:207. [19 p.] DOI:10.1186/s12870-015-0575-5
  • Golestan Hashemi FS, Rafii M, Ismail MR, et al. Biochemical, genetic and molecular advances of fragrance characteristics in rice. Crit Rev Plant Sci. 2013;32:445–457.
  • Manimaran P, Ramkumar G, Sakthivel K, et al. Suitability of non-lethal marker and marker-free systems for development of transgenic crop plants: present status and future prospects. Biotechnol Adv. 2011;29:703–714.
  • Daniell H, Muthukumar B, Lee S. Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr Genet. 2001;39:109–116.
  • Daniell H, Ruiz ON, Dhingra A. Chloroplast genetic engineering to improve agronomic traits. In: Pena L, editor. Transgenic plants: methods and protocols. Totowa (NJ): Humana Press; 2004. p. 111–137. (Methods in Molecular Biology, vol. 286).
  • Bock R. Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotech. 2007;18:100–106.
  • Daniell H. Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnol J. 2006;1:1071–1079.
  • Yu HQ, Zhou XY, Wang YG, et al. A betaine aldehyde dehydrogenase gene from Ammopiptanthus nanus enhances tolerance of Arabidopsis to high salt and drought stresses. Plant Growth Regul. 2017;83:265–276.
  • Bao Y, Zhao R, Li F, et al. Simultaneous expression of Spinacia oleracea chloroplast choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH) genes contribute to dwarfism in transgenic Lolium perenne. Plant Mol Biol Rep. 2011;29:379–388.
  • Takabe T, Rai V, Hibino T, Metabolic engineering of glycinebetaine. In: Rai AK, Takabe T, editors. Abiotic stress tolerance in plants. Dordrecht (Netherland): Springer; 2006. p. 137–151.
  • Burnet M, Lafontaine PJ, Hanson AD. Assay, purification, and partial characterization of choline monooxygenase from spinach. Plant Physiol. 1995;108:581–588.
  • Rathinasabapathi B, Burnet M, Russell BL, et al. Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning. Proc Natl Acad Sci U S A. 1997;94:3454–3458.
  • Pál M, Szalai G, Janda T. Speculation: polyamines are important in abiotic stress signaling. Plant Sci. 2015;237:16–23.
  • Sánchez-Rodríguez E, Romero L, Ruiz J. Accumulation on free polyamines enhanced antioxidant response in fruit of grafting tomato plants under water stress. J Plant Physiol. 2016;190:72–78.
  • Rhee H, Kim EJ, Lee J. Physiological polyamines: simple primordial stress molecules. J Cell Mol Med. 2007;11:685–703.
  • Ashraf M, Akram NA, Al-Qurainy F, et al. Drought tolerance: roles of organic osmolytes, growth regulators and mineral nutrients. Adv Agron. 2011;111:249–296.
  • Alcázar R, Altabella T, Marco F, et al. Polyamine: molecules with regulatory functions in plant abiotic stress tolerance. Planta. 2010;23:1237–1249.
  • Šebela M, Brauner F, Radová A, et al. Characterisation of a homogeneous plant aminoaldehyde dehydrogenase. Biochim Biophys Acta (BBA)-Protein Struct Mol Enzymol. 2000;1480:329–341.
  • Mo Z, Huang J, Xiao D, et al. Supplementation of 2-Ap, Zn and La improves 2-acetyl-1-pyrroline concentrations in detached aromatic rice panicles in vitro. PloS One. [cited 2017 Oct 29] 2016;11:e0149523. [15 p.] DOI:10.1371/journal.pone.0149523
  • Smékalová V, Doskočilová A, Komis G, et al. Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol Adv. 2014;32:2–11.
  • Uga Y, Yamamoto E, Kanno N, et al. A major QTL controlling deep rooting on rice chromosome 4. Sci Rep. 2013;3:3040.
  • Shamsudin NAA, Swamy BM, Ratnam W, et al. Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC Genet. [cited 2017 Oct 29] 2016;17:1. [14 p.] DOI:10.1186/s12863-016-0334-0
  • Ashraf M. Inducing drought tolerance in plants: recent advances. Biotechnol Adv. 2010;28:169–183.
  • Jena K, Mackill D. Molecular markers and their use in marker-assisted selection in rice. Crop Sci. 2008;48:1266–1276.
  • Nayyar H, Satwinder K, Kumar S, et al. Involvement of polyamines in the contrasting sensitivity of chickpea (Cicer arietinum L.) and soybean (Glycine max (L.) Merrill.) to water deficit stress. Bot Bull Acad Sinica. 2005;46:333–338.
  • Groppa M, Benavides M. Polyamines and abiotic stress: recent advances. Amino Acids. 2008;34:35–45.
  • Hong Y, Zhang W, Wang X. Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity. Plant Cell Environ. 2010;33:627–635.
  • Choudhury S, Panda P, Sahoo L, et al. Reactive oxygen species signaling in plants under abiotic stress. Plant Signaling Behav. [cited 2017 Oct 29] 2013;8:e23681. [7 p.] DOI:10.4161/psb.23681
  • Yao Y, Liu X, Li Z, et al. Drought-induced H2O2 accumulation in subsidiary cells is involved in regulatory signaling of stomatal closure in maize leaves. Planta. 2013;238:217–227.
  • Miura K, Okamoto H, Okuma E, et al. SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J. 2013;73:91–104.
  • Zhou XF, Jin YH, Yoo CY, et al. CYCLIN H; 1 regulates drought stress responses and blue light-induced stomatal opening by inhibiting reactive oxygen species accumulation in Arabidopsis. Plant Physiol. 2013;162:1030–1041.
  • Shen H, Liu C, Zhang Y, et al. OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice. Plant Mol Biol. 2010;80:241–253.
  • Tang N, Zhang H, Li X, et al. Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiol. 2012;158:1755–1768.
  • Jammes F, Yang X, Xiao S, et al. Two Arabidopsis guard cell-preferential MAPK genes, MPK9 and MPK12, function in biotic stress response. Plant Signaling Behav. 2011;6:1875–1877.
  • Salam MA, Jammes F, Hossain MA, et al. MAP kinases, MPK9 and MPK12, regulate chitosan-induced stomatal closure. Biosci Biotech Bioch. 2012;76:1785–1787.
  • Salam MA, Jammes F, Hossain MA, et al. Two guard cell-preferential MAPKs, MPK9 and MPK12, regulate YEL signalling in Arabidopsis guard cells. Plant Biol. 2013;15:436–442.
  • Yu L, Nie J, Cao C, et al. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol. 2010;188:762–773.
  • Tsugama D, Liu S, Takano T. Drought-induced activation and rehydration-induced inactivation of MPK6 in Arabidopsis. Biochem Biophys Res Commun. 2012;426:626–629.
  • Kim SH, Woo DH, Kim JM, et al. Arabidopsis MKK4 mediates osmotic-stress response via its regulation of MPK3 activity. Biochem Biophys Res Commun. 2011;412:150–154.
  • Shi J, Zhang L, An H, et al. GhMPK16, a novel stress-responsive group D MAPK gene from cotton, is involved in disease resistance and drought sensitivity. BMC Mol Biol. [cited 2017 Oct 29] 2011;12:1. [15 p.] DOI:10.1186/1471-2199-12-22
  • Wang J, Ding H, Zhang A, et al. A novel mitogen-activated protein kinase gene in maize (Zea mays), ZmMPK3, is involved in response to diverse environmental cues. J Integr Plant Biol. 2010;52:442–452.
  • Ahmad R, Hussain J, Jamil M, et al. Glycinebetaine synthesizing transgenic potato plants exhibit enhanced tolerance to salt and cold stresses. Pak J Bot. 2014;46:1987–1993.
  • Zhang L, Gao M, Hu J, et al. Modulation role of abscisic acid (ABA) on growth, water relations and glycinebetaine metabolism in two maize (Zea mays L.) cultivars under drought stress. Int J Mol Sci. 2012;13:3189–3202.
  • Wang ML, Guo C, Wang N, et al. Cloning and characterization of a novel betaine aldehyde dehydrogenase gene from Suaeda corniculata. Genet Mol Res. [cited 2017 Oct 29] 2016;15:15027848. [14 p.] DOI:https://doi.org/10.4238/gmr.15027848
  • Jamil A, Riaz S, Ashraf M, et al. Gene expression profiling of plants under salt stress. Crit Rev Plant Sci. 2011;30:435–458.
  • Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651–681.
  • Ward JM, Hirschi KD, Sze H. Plants pass the salt. Trends Plant Sci. 2003;8:200–201.
  • Lv DW, Zhu GR, Zhu D, et al. Proteomic and phosphoproteomic analysis reveals the response and defense mechanism in leaves of diploid wheat T. monococcum under salt stress and recovery. J Proteomics. 2016;143:93–105.
  • Wu H, Liu X, You L, et al. Effects of salinity on metabolic profiles, gene expressions, and antioxidant enzymes in halophyte Suaeda salsa. J Plant Growth Regul. 2012;31:332–341.
  • Di H, Tian Y, Zu H, et al. Enhanced salinity tolerance in transgenic maize plants expressing a BADH gene from Atriplex micrantha. Euphytica. 2015;206:775–783.
  • Tang W, Sun J, Liu J, et al. RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting glycine betaine biosynthesis in rice (Oryza sativa). Plant Mol Biol. 2014;86:443–454.
  • He Q, Yu J, Kim TS, et al. Resequencing reveals different domestication rate for BADH1 and BADH2 in rice (Oryza sativa). PloS One. [cited 2017 Oct 29] 2015;10:e0134801. [12 p.] DOI:10.1371/journal.pone.0134801
  • Ning J, Li X, Hicks LM, et al. A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol. 2010;152:876–890.
  • Kim JM, Woo DH, Kim SH, et al. Arabidopsis MKKK20 is involved in osmotic stress response via regulation of MPK6 activity. Plant Cell Rep. 2012;31:217–224.
  • Su SH, Suarez-Rodriguez MC, Krysan P. Genetic interaction and phenotypic analysis of the Arabidopsis MAP kinase pathway mutations mekk1 and mpk4 suggests signaling pathway complexity. FEBS Lett. 2007;581:3171–3177.
  • Kumar K, Rao KP, Sharma P, et al. Differential regulation of rice mitogen activated protein kinase kinase (MKK) by abiotic stress. Plant Physiol Bioch. 2008;46:891–897.
  • Zhao Q, Guo HW. Paradigms and paradox in the ethylene signaling pathway and interaction network. Mol Plant. 2011;4:626–634.
  • Xu J, Li Y, Wang Y, et al. Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J Biol Chem. 2008;283:26996–27006.
  • Persak H, Pitzschke A. Tight interconnection and multi-level control of Arabidopsis MYB44 in MAPK cascade signalling. PloS One. [cited 2017 Oct 29] 2013;8:e57547. [14 p.] DOI:10.1371/journal.pone.0057547
  • Liu XM, Nguyen XC, Kim KE, et al. Phosphorylation of the zinc finger transcriptional regulator ZAT6 by MPK6 regulates Arabidopsis seed germination under salt and osmotic stress. Biochem Biophys Res Commun. 2013;430:1054–1059.
  • Chattopadhayay MK, Tiwari BS, Chattopadhyay G, et al. Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants. Physiol. Plantarum. 2002;116:192–199.
  • Basu R, Ghosh B. Polyamines in various rice (Oryza sativa) genotypes with respect to sodium chloride salinity. Physiol Plant. 1991;82:575–581.
  • El-Shintinawy F. Photosynthesis in two wheat cultivars differing in salt susceptibility. Photosynthetica. 2001;38:615–620.
  • Zapata PJ, Serrano M, Pretel MT, et al. Polyamines and ethylene changes during germination of different plant species under salinity. Plant Sci. 2004;167:781–788.
  • Mutlu F, Bozcuk S. Effects of salinity on the contents of polyamines and some other compounds in sunflower plants differing in salt tolerance. Russ J Plant Physiol. 2005;52:29–34.
  • Ahmed F, Rafii M, Ismail MR, et al. Waterlogging tolerance of crops: breeding, mechanism of tolerance, molecular approaches, and future prospects. BioMed Res Int. 2013;2013:1–10.
  • Mitsuya S, Yokota Y, Fujiwara T, et al. OsBADH1 is possibly involved in acetaldehyde oxidation in rice plant peroxisomes. FEBS Lett. 2009;583:3625–3629.
  • Theocharis A, Clément C, Barka EA. Physiological and molecular changes in plants grown at low temperatures. Planta. 2012;235:1091–1105.
  • Mittler R, Finka A, Goloubinoff P. How do plants feel the heat ? Trends Biochem Sci. 2012;37:118–125.
  • Sangwan V, Dhindsa RS. In vivo and in vitro activation of temperature-responsive plant map kinases. FEBS Lett. 2002;531:561–564.
  • Zhu X, Feng Y, Liang G, et al. Aequorin-based luminescence imaging reveals stimulus-and tissue-specific Ca 2+ dynamics in Arabidopsis plants. Mol Plant. 2013;6:444–455.
  • Nongpiur R, Soni P, Karan R, et al. Histidine kinases in plants: cross talk between hormone and stress responses. Plant Signaling Behav. 2012;7:1230–1237.
  • Arisz SA, Wijk R, Roels W, et al. Rapid phosphatidic acid accumulation in response to low temperature stress in Arabidopsis is generated through diacylglycerol kinase. Front Plant Sci. 2013;4:1–15.
  • Delage E, Ruelland E, Guillas I, et al. Arabidopsis type-III phosphatidylinositol 4-kinases beta1 and beta2 are upstream of the phospholipase C pathway triggered by cold exposure. Plant Cell Physiol. 2012;53:565–576.
  • Ludwig AA, Romeis T, Jones JD. CDPK-mediated signalling pathways: specificity and cross-talk. J Exp Bot. 2004;55:181–188.
  • Solanke AU, Sharma AK. Signal transduction during cold stress in plants. Physiol Mol Biol Plant. 2008;14:69–79.
  • Sun Y, Fu L, Chen L, et al. Characterization of two winter wheat varieties' responses to freezing in a frigid region of the People's Republic of China. Can J Plant Sci. 2017;97:808–815.
  • Ichimura K, Mizoguchi T, Yoshida R, et al. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J. 2000;24:655–665.
  • Teige M, Scheikl E, Eulgem T, et al. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell. 2004;15:141–152.
  • Ichimura K, Mizoguchi T, Irie K, et al. Isolation of ATMEKK1 (a MAP Kinase Kinase Kinase)-interacting proteins and analysis of a MAP kinase cascade in Arabidopsis. Biochem Biophys Res Commun. 1998;253:532–543.
  • Pitzschke A, Schikora A, Hirt H. MAPK cascade signalling networks in plant defence. Curr Opin Plant Biol. 2009;12:421–426.
  • Matsuoka D, Nanmori T, Sato KI, et al. Activation of AtMEK1, an Arabidopsis mitogen-activated protein kinase kinase, in vitro and in vivo: analysis of active mutants expressed in E. coli and generation of the active form in stress response in seedlings. Plant J. 2002;29:637–647.
  • Evrard A, Kumar M, Lecourieux D, et al. Regulation of the heat stress response in Arabidopsis by MPK6-targeted phosphorylation of the heat stress factor HsfA2. Peer J. [cited 2017 Oct 29] 2013;1:e59. [21 p.] DOI:10.7717/peerj.59
  • Singer SD, Zou J, Weselake RJ. Abiotic factors influence plant storage lipid accumulation and composition. Plant Sci. 2016;243:1–9.
  • Suzuki N, Rivero RM, Shulaev V, et al. Abiotic and biotic stress combinations. New Phytol. 2014;203:32–43.
  • Mittler R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006;11:15–19.
  • Knight H, Knight MR. Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci. 2001;6:262–267.
  • Wani SH, Kumar V, Shriram V, et al. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 2016;4:162–176.
  • Wang Z, Huang B. Physiological recovery of Kentucky bluegrass from simultaneous drought and heat stress. Crop Sci. 2004;44:1729–1736.
  • Rizhsky L, Liang H, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol. 2002;130:1143–1151.
  • Rizhsky L, Liang H, Shuman J, et al. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 2004;134:1683–1696.
  • Fan W, Zhang M, Zhang H, et al. Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS One. [cited 2017 Oct 29] 2012;7:e37344. [14 p.] DOI:10.1371/journal.pone.0037344
  • Gay F, Maraval I, Roques S, et al. Effect of salinity on yield and 2-acetyl-1-pyrroline content in the grains of three fragrant rice cultivars (Oryza sativa L.) in Camargue (France). Field Crops Res. 2010;117:154–160.
  • Cheng LR, Wang JM, Uzokwe V, et al. Genetic analysis of cold tolerance at seedling stage and heat tolerance at anthesis in rice (Oryza sativa L.). J Integr Agric. 2012;11:359–367.