2,023
Views
23
CrossRef citations to date
0
Altmetric
Articles

Genetic diversity and population structure analysis of landrace and improved safflower (Cartamus tinctorious L.) germplasm using arbitrary functional gene-based molecular markers

, , &
Pages 1183-1194 | Received 26 Oct 2017, Accepted 09 Jul 2018, Published online: 26 Aug 2018

References

  • Knowles P, Ashri A. Safflower: Carthamus tinctorius (Compositae). In: Smartt J, Simmonds NW, editors. Evolution of crop plants. Harlow (UK): Longman; 1995. p. 47–50.
  • Burke JM, Tang S, Knapp SJ, et al. Genetic analysis of sunflower domestication. Genetics. 2002;161:1257–1267.
  • Dordas CA, Sioulas C. Dry matter and nitrogen accumulation, partitioning, and retranslocation in safflower (Carthamus tinctorius L.) as affected by nitrogen fertilization. Field Crops Res. 2009;110:35–43.
  • Morrell PL, Buckler ES, Ross-Ibarra J. Crop genomics: advances and applications. Nat Rev Genet. 2012;13:85–96.
  • Castañeda-Álvarez NP, Khoury CK, Achicanoy HA, et al. Global conservation priorities for crop wild relatives. Nature Plants. 2016;2(4):16022.
  • Khan MA, von Witzke-Ehbrecht S, Maass BL, et al. Evaluation of a worldwide collection of safflower for morphological diversity and fatty acid composition. Vorträge für Pflanzenzächtung. 2004;62:104–106.
  • Jaradat AA, Shahid M. Patterns of phenotypic variation in a germplasm collection of Carthamus tinctorius L. from the Middle East. Genet Resour Crop Evol. 2006;53:225–244.
  • Zhang ZW. Studies on genetic diversity and classification of safflower (Carthamus tinctorius L.) germplasm byisozyme techniques. In: Bergman J, Mundel HH, editors. Proceedings of the 5th International Safflower Conference; 2001 Jul 23–27; Williston, ND and Sidney, MT. Fargo (ND): Department of Plant Pathology, North Dakota State University; 2001. p. 157–162.
  • Yielaghi H, Arzani A, Ghaderian M, et al. Effect of salinity on seed oil content and fatty acid composition of safflower (Carthamus tunctorius L.) genotypes. Food Chem. 2012;130:618–625.
  • Amini F, Saeidi GH, Arzani A. Study of genetic diversity in safflower genotypes using agro-morphological traits and RAPD markers. Euphytica. 2008;163:21–30.
  • Khan MA, von Witzke-Ehbrech S, Maass BL, et al. Relationships among different geographical groups, agro-morphology, fatty acid composition and RAPD marker diversity in Safflower (Carthamus tinctorius). Genet Resour Crop Evol. 2009;56:19–30.
  • Mahasi MJ, Wachira FN, Pathak RS, et al. Genetic polymorphism in exotic safflower (Carthamus tinctorious L.) using RAPD markers. J Plant Breed Crop Sci. 2009;1:8–12.
  • Johnson RC, Kisha TJ, Evans MA. Characterizing safflower germplasm with AFLP molecular markers. Crop Sci. 2007;47:1728–1736.
  • Ash GJ, Raman R, Crump NS. An investigation of genetic variation in Carthamus lanatus in New South Wales, Australia, using inter-simple sequence repeats (ISSR) analysis. Weed Res. 2003;43:208–213.
  • Yang YX, Wu W, Zheng YL, et al. Genetic diversity and relationships among safflower (Carthamus tinctorius L.) analyzed by inter-simple sequence repeats (ISSRs). Genet Resour Crop Evol. 2007;54:1043–1051.
  • Usha Kiran B, Mukta N, Kadirvel P, et al. Genetic diversity of safflower (Carthamus tinctorius L.) germplasm as revealed by SSR markers. Plan Genet Resour. 2015;15(1):1–15.
  • Collard BCY, Mackill DJ. Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating genetargeted markers in plants. Plant Mol Biol Report. 2009;27:86–93.
  • Collard BCY, Mackill DJ. Conserved DNA-derived polymorphism (CDDP): a simple and novel method for generating DNA markers in plants. Plant Mol Biol Report. 2009;27:558–562.
  • Singh AK, Rana MK, Singh S, et al. CAAT box-derived polymorphism (CBDP): a novel promoter-targeted molecular marker for plants. J Plant Biochem Biotechnol. 2014;23:175–183.
  • Amirmoradi B, Talebi R, Karami E. Comparison of genetic variationand differentiation among annual Cicer species using start codon targeted (SCoT) polymorphism, DAMD-PCR, and ISSR markers. Plant Syst Evol. 2012;298:1679–1688.
  • Pakseresht F, Talebi R, Karami E. Comparative assessment of ISSR, DAMD and SCoT markers for evaluation of genetic diversity and conservation of chickpea (Cicer arietinum L.) landraces genotypes collected from north-west of Iran. Physiol Mol Biol Plant. 2013;19(4):563–574.
  • Gorji AM, Poczai P, Polgar Z, Taller J. Efficiency of arbitrarily amplified dominant markers (SCOT, ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato. Am J Potato Res. 2011;88:226–237.
  • Shahlaei A, Torabi S, Khosroshahli M. Efficacy of SCoT and ISSR markers in assessment of tomato (Lycopersicum esculentum Mill.) genetic diversity. Int J Biol Sci. 2014;5:14–22.
  • Xiong F, Zhong R, Han Z, Jiang J, He L, Zhuang W, Tang R. Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes. Mol Biol Rep. 2011;38:3487–3494.
  • Hamidi H, Talebi R, Keshavarz F. Comparative efficiency of functional gene-based markers, start codon targeted polymorphism (SCoT) and conserved DNA-derived Polymorphism (CDDP) with ISSR markers for diagnostic fingerprinting in wheat (Triticum aestivum L.). Cereal Res Commun. 2014;44(4):558–567.
  • Seyedimoradi H, Talebi R, Fayaz F. Geographical diversity pattern in Iranian landrace durum wheat (Triticum turgidum) accessions using start codon targeted polymorphism and conserved DNA-derived polymorphism markers. Environ Exp Biol. 2016;14:63–68.
  • Poczai P, Varga I, Bell NE, Hyvonen J. Genetic diversity assessment of bitter sweet (Solanum dulcamara, Solanaceae) germplasm using conserved DNA-derived polymorphism and intron-targeting markers. Ann Appl Biol. 2011;159:141–153.
  • Hajibarat Z, Saidi A, Hajibarat Z, et al. Characterization of genetic diversity in chickpea using SSR markers, Start Codon Targeted Polymorphism (SCoT) and Conserved DNA-Derived Polymorphism (CDDP). Physiol Mol Biol Plants. 2015;21(3):365–373.
  • Lassner MW, Peterson P, Yoder JI. Simultaneous amplification of multiple DNA fragments by polymerase chain reaction in the analysis of transgenic plants and their progeny. Plant Mol Biol Report. 1989;7:116–128.
  • Perrier X, Flori A, Bonnot F. Data analysis methods. In: Hamon P, Seguin M, Perrier X, Glaszmann JC, editors. Genetic diversity of cultivated tropical plants. Boca Raton (FL): CRC Press; 2003. p. 43–76.
  • Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959.
  • Paliwal R, Singh R, Singh AK, et al. Molecular characterization of Giloe (Tinospora cordifolia Willd. Miers ex Hook. F. and Thoms.) accessions using Start Codon Targeted (SCoT) markers. Int J Med Aromat Plants. 2013;3:413–422.
  • Heikrujam M, Kumar J, Agrawal V. Genetic diversity analysis among male and female Jojoba genotypes employing gene targeted molecular markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) markers. Meta Gene. 2015;5:90–97.
  • Lee G-A, Sung J-S, Lee SY, et al. Genetic assessment of safflower (Carthamus tinctorius L.) collection with microsatellite markers acquired via pyrosequencing method. Mol Ecol Resour. 2014;14:69–78.
  • Derakhshan E, Majidi MM, Sharafi Y, et al. Discrimination and genetic diversity of cultivated and wild safflowers (Carthamus spp.) using EST–microsatellites markers. Bioch Syst Ecol. 2014;54:130–136.
  • Kumar S, Ambreen H, Murali TV, et al. Assessment of genetic diversity and population structure in a global reference collection of 531 accessions of Carthamus tinctorius (safflower) using AFLP markers. Plant Mol Biol Report. 2014;33(5):1299–1313.
  • Yaman H, Tarıkahya-Hacıoğlu B, Arslan Y, et al. Molecular characterization of the wild relatives of safflower (Carthamus tinctorius L.) in Turkey as revealed by ISSRs. Genet Resour Crop Evol. 2014;61:595–602.
  • Tomar P, Malik CP. Genetic diversity assessment in Trachyspermum ammi L. Sprague using CDDP and CBDP markers. J Plant Sci Res. 2016;32:27–36.
  • Tiwari G, Singh R, Singh N, et al. Study of arbitrarily amplified (RAPD and ISSR) and gene targeted (SCoT and CBDP) markers for genetic diversity and population structure in Kalmegh [Andrographis paniculata (Burm. f.) Nees]. Indust Crop Prod. 2016;86:1–11.
  • Bhattacharya A, Jaime A, Silva TD. Molecular systematics in Chrysanthemum × grandiflorum (Ramat.) Kitamura. Sci Hortic. 2006;109:379–384.
  • Guo DL, Zhang JY, Liu CH. Genetic diversity in some grape varieties revealed by SCoT analyses. Mol Biol Rep. 2012;39:5307–5313.
  • Nadeem MA, Nawaz MA, Shahid MQ, et al. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnol Equip. 2018;32:261–285.