2,124
Views
3
CrossRef citations to date
0
Altmetric
Articles

Metamizole (dipyrone) – cytotoxic and antiproliferative effects on HeLa, HT-29 and MCF-7 cancer cell lines

, , , , , & show all
Pages 1327-1337 | Received 21 Jan 2018, Accepted 09 Aug 2018, Published online: 29 Oct 2018

References

  • Thun MJ. Aspirin, NSAIDs, and digestive tract cancers. Cancer Metastasis Rev. 1994;13(3):269–277.
  • Harris RE, Kasbari S, Farrar WB. Prospective study of nonsteroidal anti-inflammatory drugs and breast cancer. Oncol Rep. 1999;6(1):71–74.
  • Marx J. Anti-inflammatories inhibit cancer growth–but how? Science. 2001;291(5504):581–582.
  • Thun MJ. NSAID use and decreased risk of gastrointestinal cancers. Gastroenterol Clin North Am. 1996;25(2):333–348.
  • Gu M, Nishihara R, Chen Y, et al. Aspirin exerts high anti-cancer activity in PIK3CA-mutant colon cancer cells. Oncotarget. 2017;8(50):87379–87389.
  • Piazza GA, Alberts DS, Hlzson LJ, et al. Sulindac sulfone inhibits azoxymethane-induced colon carcinogenesis in rats without reducing prostaglandin levels. Cancer Res. 1997;57:2909–2915.
  • Chan TA, Morin PJ, Vogelstein B, et al. Mechanisms underlying nonsteroidal antiinflammatory drug-mediated apoptosis. P Natl Acad Sci USA. 1998;95(2):681–686.
  • Shiff SJ, Koutsos MI, Qiao L, et al. Nonsteroidal antiinflammatory drugs inhibit the proliferation of colon adenocarcinoma cells: effects on cell cycle and apoptosis. Exp Cell Res. 1996;222(1):179–188.
  • Nikolova I, Tencheva J, Voinikov J, et al. Metamizole: a review profile of a well-known “forgotten” drug. Part I: pharmaceutical and nonclinical profile. Biotechnol Biotechnol Equip. 2012;26(6):3329–3337.
  • Nikolova I, Petkova V, Tencheva J, et al. Metamizole: a review profile of a well-known “forgotten” drug. Part II: clinical Profile. Biotechnol Biotechnol Equip. 2013;27(2):3605–3619.
  • Malsy M, Graf B, Bundscherer A. Effects of metamizole, MAA, and paracetamol on proliferation, apoptosis, and necrosis in the pancreatic cancer cell lines PaTu 8988 t and Panc-1. BMC Pharmacol Toxico. 2017 [cited 2018 Feb 01];18(1):77. DOI: 10.1186/s40360-017-0185-y
  • Bundscherer AC, Malsy M, Gruber MA, et al. Acetaminophen and metamizole induce apoptosis in HT 29 and SW 480 colon carcinoma cell lines in vitro. Anticancer Res. 2018;38(2):745–751.
  • Shao J, Feng G. Selective killing effect of oxytetracycline, propafenone and metamizole on A549 or Hela cells. Chinese J Cancer Res. 2013;25(6):662–670.
  • Shiang J-C, Jan R-L, Tsai M-K, et al. Dipyrone & 2, 5-dimethylcelecoxib suppress Th2-related chemokine production in monocyte. Indian J Med Res. 2014;140(1):109–115.
  • De Luna-Bertos E, Ramos-Torrecillas J, García-Martínez O, et al. Therapeutic doses of nonsteroidal anti-inflammatory drugs inhibit osteosarcoma MG-63 osteoblast-like cells maturation, viability, and biomineralization potential. Sci World J. 2013;2013:809891.
  • Zhang Y, Wang X, Baranov SV, et al. Dipyrone inhibits neuronal cell death and diminishes hypoxic/ischemic brain injury. Neurosurgery. 2011;69(4):942–956.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55–63.
  • Hulkower KI, Herber RL. Cell migration and invasion assays as tools for drug discovery. Pharmaceutics. 2011;3(1):107–124.
  • Abdel-Wahab SI, Abdul AB, Mohan S, et al. Oncolysis of breast, liver and leukemia cancer cells using ethyl acetate and methanol extracts of Goniothalamus umbrosus. Res J Biol Sci. 2009;4(2):209–215.
  • Wang G, Li J, Zhang L, et al. Celecoxib induced apoptosis against different breast cancer cell lines by down-regulated NF-κB pathway. Biochem Bioph Res Co. 2017;490(3):969–976.
  • Li Q, Peng J, Liu T, et al. Effects of celecoxib on cell apoptosis and Fas, FasL and Bcl‐2 expression in a BGC‐823 human gastric cancer cell line. Exp Ther Med. 2017;14(3):1935–1940.
  • Piazuelo E, Esquivias P, De Martino A, et al. Acetylsalicylic acid exhibits antitumor effects in esophageal adenocarcinoma cells in vitro and in vivo. Digest Dis Sci. 2016;61(10):2896–2907.
  • Pang LY, Argyle SA, Kamida A, et al. The long-acting COX-2 inhibitor mavacoxib (Trocoxil™) has anti-proliferative and pro-apoptotic effects on canine cancer cell lines and cancer stem cells in vitro. BMC Vet Res. 2014 [cited 2018 Feb 01];10(1):184. DOI: 10.1186/s12917-014-0184-9
  • Leidgens V, Seliger C, Jachnik B, et al. Ibuprofen and diclofenac restrict migration and proliferation of human glioma cells by distinct molecular mechanisms. PloS one. 2015;10(10):e0140613.
  • Roller A, Bähr OR, Streffer J, et al. Selective potentiation of drug cytotoxicity by NSAID in human glioma cells: the role of COX-1 and MRP. Biochem Bioph Res Co. 1999;259(3):600–605.
  • Roh J-L, Kim EH, Jang H, et al. Aspirin plus sorafenib potentiates cisplatin cytotoxicity in resistant head and neck cancer cells through xCT inhibition. Free Radical Bio Med. 2017;104:1–9.
  • Barbarić M, Kralj M, Marjanović M, et al. Synthesis and in vitro antitumor effect of diclofenac and fenoprofen thiolated and nonthiolated polyaspartamide-drug conjugates. Eur J Med Chem. 2007;42(1):20–29.
  • Yamazaki R, Kusunoki N, Matsuzaki T, et al. Selective cyclooxygenase‐2 inhibitors show a differential ability to inhibit proliferation and induce apoptosis of colon adenocarcinoma cells. FEBS letters. 2002;531(2):278–284.
  • Bock JM, Menon SG, Sinclair LL, et al. Celecoxib toxicity is cell cycle phase specific. Cancer Res. 2007;67(8):3801–3808.
  • Sánchez-Alcázar JA, Bradbury DA, Pang L, et al. Cyclooxygenase (COX) inhibitors induce apoptosis in non-small cell lung cancer through cyclooxygenase independent pathways. Lung Cancer. 2003;40(1):33–44.
  • Dyakova L, Culita DC, Zhivkova T, et al. 3d metal complexes with meloxicam as therapeutic agents in the fight against human glioblastoma multiforme and cervical carcinoma. Biotechnol Biotechnol Equip. 2015;29(6):1190–1200.
  • McDonald BF, Quinn AM, Devers T, et al. In‐vitro characterisation of a novel celecoxib microbead formulation for the treatment and prevention of colorectal cancer. J Pharm Pharmacol. 2015;67(5):685–695.
  • Li S, Gu Z, Xiao Z, et al. Anti-tumor effect and mechanism of cyclooxygenase-2 inhibitor through matrix metalloproteinase 14 pathway in PANC-1 cells. Int J Cli Exp Patho. 2015;8(2):1737–1742.
  • Wynne S, Djakiew D. NSAID inhibition of prostate cancer cell migration is mediated by Nag-1 induction via the p38 MAPK-p75NTR pathway. Molec Cancer Res. 2010;8(12):1656–1664.
  • Hsieh C-C, Huang Y-S. Aspirin breaks the crosstalk between 3T3-L1 adipocytes and 4T1 breast cancer cells by regulating cytokine production. PloS one. 2016 [cited 2018 Feb 01];11(1):e0147161. DOI: 10.1371/journal.pone.0147161
  • Dannoura A, Giraldo A, Pereira I, et al. Ibuprofen inhibits migration and proliferation of human coronary artery smooth muscle cells by inducing a differentiated phenotype: role of peroxisome proliferator‐activated receptor γ. J Pharma Pharmacol. 2014;66(6):779–792.
  • He B, Lu N, Zheng Zhou Z. Cellular and Nuclear Degradation during Apoptosis. Curr Opin Cell Biol. 2009;21(6):900–912.
  • Bonanno E, Tagliafierro G, Carlà EC, et al. Synchronized onset of nuclear and cell surface modifications in U937 cells during apoptosis. Eur J Histochem. 2002;46(1):61–74.
  • Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.
  • Wang D, DuBois RN. The role of anti-inflammatory drugs in colorectal cancer. Annu Rev Med. 2013;64:131–144.
  • Veettil SK, Lim KG, Ching SM, et al. Effects of aspirin and non-aspirin nonsteroidal anti-inflammatory drugs on the incidence of recurrent colorectal adenomas: a systematic review with meta-analysis and trial sequential analysis of randomized clinical trials. BMC Cancer. 2017;17(1):763. DOI: 10.1186/s12885-017-3757-8
  • Chan AT, Arber N, Burn J, et al. Aspirin in the chemoprevention of colorectal neoplasia: an overview. Cancer Prev Res. 2012;5(2):164–178.
  • Umar A, Steele VE, Menter DG, et al. Mechanisms of nonsteroidal anti-inflammatory drugs in cancer prevention. Semin Oncol. 2016;43(1):65–77.
  • Gurpinar E, Grizzle WE, Piazza GA. NSAIDs inhibit tumorigenesis, but how? Clin Cancer Res. 2014;20(5):1104–1113.
  • Gurpinar E, Grizzle WE, Piazza GA. COX-independent mechanisms of cancer chemoprevention by anti-inflammatory drugs. Front Oncol. 2013;3:181. DOI: 10.3389/fonc.2013.00181
  • Zhou Y, Hancock JF, Lichtenberger LM. The nonsteroidal anti-inflammatory drug indomethacin induces heterogeneity in lipid membranes: potential implication for its diverse biological action. PLoS One. 2010 [cited 2018 Feb 01];5(1):e8811. DOI: 10.1371/journal.pone.0008811
  • Yiannakopoulou EC. Aspirin and NSAIDs for breast cancer chemoprevention. Eur J Cancer Prev. 2015;24(5):416–421.
  • Sostin N, He S, Sostin O, et al. NSAIDs Use after Breast Cancer Diagnosis Improves Relapse-Free and Overall Survival: Retrospective Pilot Study. Am J Cli Patho. 2016;146(suppl_1):S139–S140.
  • Vidal AC, Howard LE, Moreira DM, et al. Aspirin, NSAIDs, and risk of prostate cancer: results from the REDUCE study. Cli Cancer Res. 2015;21(4):756–762.
  • Muranushi C, Olsen CM, Green AC, et al. Can oral nonsteroidal antiinflammatory drugs play a role in the prevention of basal cell carcinoma? A systematic review and metaanalysis. J Am Acad Dermatol. 2016;74(1):108–119.
  • Rothwell PM, Fowkes FG, Belch JF, et al. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet. 2011;377(9759):31–41.
  • Nagle CM, Ibiebele TI, DeFazio A, et al. Aspirin, nonaspirin nonsteroidal anti-inflammatory drugs, acetaminophen and ovarian cancer survival. Cancer Epidemiol. 2015;39(2):196–199.
  • Brøns N, Baandrup L, Dehlendorff C, et al. Use of nonsteroidal anti-inflammatory drugs and risk of endometrial cancer: a nationwide case–control study. Cancer Causes Control. 2015;26(7):973–981.
  • Verdoodt F, Friis S, Dehlendorff C, et al. Non-steroidal anti-inflammatory drug use and risk of endometrial cancer: a systematic review and meta-analysis of observational studies. Gynecol Oncol. 2016;140(2):352–358.
  • Tang L, Hu H, Liu H, et al. Association of nonsteroidal anti-inflammatory drugs and aspirin use and the risk of head and neck cancers: a meta-analysis of observational studies. Oncotarget. 2016 [cited 2018 Feb 01];7(40):65196. DOI: 10.18632/oncotarget.11239
  • Kakiuchi Y, Sasaki N, Satoh-Masuoka M, et al. A novel pyrazolone, 4, 4-dichloro-1-(2, 4-dichlorophenyl)-3-methyl-5-pyrazolone, as a potent catalytic inhibitor of human telomerase. Biochem Bioph Res Co. 2004;320(4):1351–1358.
  • Brana MF, Gradillas A, Ovalles AG, et al. Synthesis and biological activity of N, N-dialkylaminoalkyl-substituted bisindolyl and diphenyl pyrazolone derivatives. Bioorg Med Chem. 2006;14(1):9–16.
  • Ohki H, Hirotani K, Naito H, et al. Synthesis and mechanism of action of novel pyrimidinyl pyrazole derivatives possessing antiproliferative activity. Bioorg Med Chem Lett. 2002;12(21):3191–3193.
  • Wang X, Wang X, Liang Y, et al. A cell-based screen for anticancer activity of 13 pyrazolone derivatives. Chin J Cancer. 2010;29(12):980–987.
  • Zhao B, Shang X, Xu L, et al. Novel mixed ligand di-n-butyltin (IV) complexes derived from acylpyrazolones and fluorinated benzoic acids: Synthesis, characterization, cytotoxicity and the induction of apoptosis in Hela cancer cells. Eur J Med Chem. 2014;76:87–97.
  • Salama SK, Mohamed MF, Darweesh AF, et al. Molecular docking simulation and anticancer assessment on human breast carcinoma cell line using novel bis (1, 4-dihydropyrano [2, 3-c] pyrazole-5-carbonitrile) and bis (1, 4-dihydropyrazolo [4′, 3′: 5, 6] pyrano [2, 3-b] pyridine-6-carbonitrile) derivatives. Bioorg Chem. 2017;71:19–29.
  • Jasiecka A, Maślanka T, Jaroszewski J. Pharmacological characteristics of metamizole. Pol J Vet Sci. 2014;17(1):207–214.
  • Konijnenbelt‐Peters J, Heijden C, Ekhart C, et al. Metamizole (Dipyrone) as an alternative agent in postoperative analgesia in patients with contraindications for nonsteroidal anti‐inflammatory drugs. Pain Practice. 2017;17(3):402–408.
  • Lampl C, Likar R. Metamizole (dipyrone): mode of action, drug-drug interactions, and risk of agranulocytosis. Schmerz (Berlin, Germany). 2014;28(6):584–590.
  • Stamer UM, Gundert-Remy U, Biermann E, et al. Dipyrone (metamizole): considerations on monitoring for early detection of agranulocytosis. Schmerz. 2017;31(1):5–13.
  • Zelenay S, van der Veen AG, Böttcher JP, et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell. 2015;162(6):1257–1270.
  • Liu XH, Rose DP. Differential expression and regulation of cyclooxygenase-1 and -2 in two human breast cancer cell lines. Cancer Res. 1996;56(22):5125–5127.
  • Yu DS, Chen HI, Chang SY. The expression of cyclooxygenase in transitional cell carcinoma cell lines: its correlation with tumor differentiation, invasiveness and prostanoids production. Eur Urol. 2003;44(4):491–494.
  • Sugimoto T, Koizumi T, Sudo T, et al. Correlative expression of cyclooxygenase-1 (Cox-1) and human epidermal growth factor receptor type-2 (Her-2) in endometrial cancer. Kobe J Med Sci. 2007;53(5):177–187.
  • Jeon Y-T, Song Y-C, Kim S-H, et al. Influences of cyclooxygenase-1 and-2 expression on the radiosensitivities of human cervical cancer cell lines. Cancer Lett. 2007;256(1):33–38.
  • Liu C, Yang C, Lu L, et al. Luminescent iridium (III) complexes as COX-2-specific imaging agents in cancer cells. Chem Com. 2017;53(19):2822–2825.
  • Buecher B, Bouancheau D, Broquet A, et al. Growth inhibitory effect of celecoxib and rofecoxib on human colorectal carcinoma cell lines. Anticancer Res. 2005;25(1A):225–233.
  • Pierre S, Schmidt R, Brenneis C, et al. Inhibition of cyclooxygenases by dipyrone. Bri J Pharmacol. 2007;151(4):494–503.