1,209
Views
1
CrossRef citations to date
0
Altmetric
Articles

Imaging of redox-imbalance and oxidative stress in kidney in vivo, induced by dietary cholesterol

, , , , , & show all
Pages 294-301 | Received 28 Sep 2018, Accepted 18 Jan 2019, Published online: 08 Feb 2019

References

  • Abdel-Daim MM, Abd Eldaim MA, Mahmoud MM. Trigonella foenum-graecum protection against deltamethrin-induced toxic effects on hematological, biochemical, and oxidative stress parameters in rats. Can J Physiol Pharmacol. 2014;92:679–685.
  • Abdou RH, Abdel-Daim MM. Alpha-lipoic acid improves acute deltamethrin-induced toxicity in rats. Can J Physiol Pharmacol. 2014;92:773–779.
  • Abdel-Daim M, El-Bialy BE, Rahman HGA, et al. Antagonistic effects of Spirulina platensis against sub-acute deltamethrin toxicity in mice: biochemical and histopathological studies. Biomed Pharmacother. 2016;77:79–85.
  • Abdel-Daim MM, Khalifa HA, Abushouk AI. Diosmin attenuates methotrexate-induced hepatic, renal, and cardiac injury: a biochemical and histopathological study in mice. Oxid Med Cell Longev. 2017;2017:3281670.
  • Abdel-Daim MM, Dessouki AA, Abdel-Rahman HG, et al. Hepatorenal protective effects of taurine and N-acetylcysteine against fipronil-induced injuries: the antioxidant status and apoptotic markers expression in rats. Sci Total Environ. 2019;650:2063–2073.
  • Betjes MG. Immune cell dysfunction and inflammation in end-stage renal disease. Nat Rev Nephrol. 2013;9:255–265.
  • Kon V, Linton MRF, Fazio S. Atherosclerosis in chronic kidney disease: the role of macrophages. Nat Rev Nephrol. 2011;7:45–54.
  • Vostalova J, Galandakova A, Svobodova AR, et al. Time-course evaluation of oxidative stress-related biomarkers after renal transplantation. Ren Fail. 2012;34:413–419.
  • Ilori TO, Sun RY, Kong SY, et al. Oxidative balance score and chronic kidney disease. Am J Nephrol. 2015;42:320–327.
  • Georgieva E, Ivanova D, Zhelev Z, et al. Mitochondrial dysfunction and redox imbalance as a diagnostic marker of “free radical diseases”. Anticancer Res. 2017;37:5373–5381.
  • Maulucci G, Bacic G, Bridal L, et al. Imaging of ROS-induced modifications in living cells. Antioxid Redox Signal. 2016;24:939–957.
  • Kalyanaraman B, Darley-Usmar V, Davies KJ, et al. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med. 2012;52:1–6.
  • Dikalov SI, Harrison DG. Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid Redox Signal. 2014;20:372.
  • Bacic G, Pavicevic A, Peyrot F. In vivo evaluation of different alterations of redox status by studying pharmacokinetics of nitroxides using magnetic resonance techniques. Redox Biol. 2016;8:226–242.
  • Soule BP, Hyodo F, Matsumoto K, et al. The chemistry and biology of nitroxide compounds. Free Radic Biol Med. 2007;42:1632–1650.
  • Batinic-Haberle I, Reboucas JS, Spasojević I. Superoxide dismutase mimetics: chemistry, pharmacology, and therapeutic potential. Antioxid Redox Signal. 2010;13:877–918.
  • Bobko AA, Kirilyuk IA, Grigor'ev IA, et al. Reversible reduction of nitroxides to hydroxylamines: roles for ascorbate and glutathione. Free Radic Biol Med. 2007;42:404–412.
  • Zhelev Z, Bakalova R, Aoki I, et al. Magnetic resonance imaging of mitochondrial dysfunction and metabolic activity accompanied by overproduction of superoxide. ACS Chem Neurosci. 2015;6:1922–1929.
  • Domrongkitchaiporn S, Sritara P, Kitiyakara C, et al. Risk factors for development of decreased kidney function in a southeast Asian population: a 12-year cohort study. J Am Soc Nephrol. 2005;16:791–799.
  • Cheng ZZ, Patari A, Aalto-Setala K, et al. Hypercholesterolemia is a prerequisite for puromycin inducible damage in mouse kidney. Kidney Int. 2003;63:107–112.
  • Rodriguez-Porcel M, Krier JD, Lerman A, et al. Combination of hypercholesterolemia and hypertension augments renal function abnormalities. Hypertension. 2001;37:774–780.
  • Fang Q, Zou C, Zhong P, et al. EGFR mediates hyperlipidemia-induced renal injury via regulating inflammation and oxidative stress: the detrimental role and mechanism of EGFR activation. Oncotarget. 2016;7:24361–24373.
  • Okamura DM, Pennathur S, Pasichnyk K, et al. CD36 regulates oxidative stress and inflammation in hypercholesterolemic CKD. J Am Soc Nephrol. 2009;20:495–505.
  • Bentley MD, Rodriguez-Porcel M, Lerman A, et al. Enhanced renal cortical vascularization in experimental hypercholesterolemia. Kidney Int. 2002;61:1056–1063.
  • Qiao M, Zhao Q, Lee CF, et al. Thiol oxidative stress induced by metabolic disorders amplifies macrophage chemotactic response and accelerates atherogenic and kidney injury in LDL receptor-deficient mice. ATVB. 2009;29:1779–1786.
  • Cachofeiro V, Goicochea M, de Vinuesa SG, et al. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int Suppl. 2008;74:S4–S9.
  • Deepa PR, Varalakshmi P. Salubrious effect of low molecular weight heparin on atherogenic diet-induced cardiac, hepatic and renal lipid peroxidation and collapse of antioxidant defences. Mol Cell Biochem. 2003;254:111–116.
  • Mehlhorn RJ. Ascorbate- and dehydroascorbic acid-mediated reduction of free radicals in the human erythrocytes. J Biol Chem. 1991;266:2724–2731.
  • Wan C, Su H, Zhang C. Role of NADPH oxidase in metabolic disease-related renal injury: an update. Oxid Med Cell Longev. 2016;2016:7813072.
  • Gamboa JL, Billing FT, Bojanowski MT, et al. Mitochondrial dysfunction and oxidative stress in patients with chronic kidney disease. Physiol Rep. 2016;4:e12780.
  • Zhelev Z, Aoki I, Gadjeva V, et al. Tissue redox activity as a sensing platform for imaging of cancer based on nitroxide redox cycle. Eur J Cancer. 2013;49:1467–1478.
  • Bakalova R, Zhelev Z, Aoki I, et al. Tissue redox activity as a hallmark of carcinogenesis: from early to terminal stages of cancer. Clin Cancer Res. 2013;19:2503–2517.
  • Samuni Y, Gamson J, Samuni A, et al. Factors influencing nitroxide reduction and cytotoxicity in vitro. Antioxid Redox Signal. 2004;6:587–595.
  • Suzuki-Nishimura T, Swartz HM. Reduction of lipid-soluble nitroxides in CHO cells and macrophage tumor cells. Free Radic Biol Med. 1994;17:473–479.
  • Hyodo F, Yasukawa K, Yamada K-I, et al. Spatially resolved time-course studies of free radical reactions with an EPRI/MRI fusion technique. Magn Reson Med. 2006;56:938–943.
  • Hyodo F, Matsumoto K, Matsumoto A, et al. Probing the intracellular redox status of tumors with MRI and redox-sensitive contrast agents. Cancer Res. 2006;66:9921–9928.
  • Matsumoto K, Hyodo F, Matsumoto A, et al. High-resolution mapping of tumor redox status by MRI using nitroxides as redox-sensitive contrast agents. Clin Cancer Res. 2006;12:2455–2462.
  • Hirayama A, Ueda A, Oteki T, et al. In vivo imaging of renal redox status during azelnidipine treatment. Hypertens Res. 2008;31:1643–1650.
  • Tomizawa A, Hadjidekov G, Ishii I, et al. Nitroxide derivatives for imaging of hypercholesterolemia-induced kidney dysfunction and assessing the effectiveness of antilipidemic drugs. Mol Pharm. 2011;8:1962–1969.
  • Soule BP, Hyodo D, Matsumoto K, et al. Therapeutic and clinical applications of nitroxide compounds. Antioxid Redox Signal. 2007;9:1731–1743.
  • Zuo L, Chen YR, Reyes LA, et al. The radical trap 5,5-dimethyl-1-pyrroline N-oxide exerts dose-dependent protection against myocardial ischemia-reperfusion injury through preservation of mitochondrial electron transport. J Pharmacol Exp Ther. 2009;329:515–523.
  • Liu Y, Wang Y, Ding W, et al. Mito-TEMPO alleviates renal fibrosis by reducing inflammation, mitochondrial dysfunction, and endoplasmic reticulum stress. Oxid Med Cell Longev. 2018;2018:5828120.