1,206
Views
4
CrossRef citations to date
0
Altmetric
Articles

Identification of major QTLs associated with agronomical traits and candidate gene mining in soybean

, , , , , & show all
Pages 1481-1493 | Received 30 May 2019, Accepted 27 Sep 2019, Published online: 14 Oct 2019

References

  • Masuda T, Goldsmith PD. World soybean production: area harvested, yield, and long-term projections. Int Food Agribus Manag Rev. 2019;12:143–162.
  • Boerma HR, Specht JE. Soybeans: improvement, production and uses. Madison (WI): Am Soc of Agron; 2004.
  • Bernardo R. Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci. 2008;48(5):1649–1664.
  • Apuya NR, Frazier BL, Keim P, et al. Restriction fragment length polymorphisms as genetic markers in soybean, Glycine max (L.) Merrill. Theor Appl Genet. 1988;75:889–901.
  • Keim P, Diers BW, Olson TC, et al. RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics. 1990;126:735–742.
  • Shoemaker RC, Specht JE. Integration of the soybean molecular and classical genetic linkage groups. Crop Sci. 1995;35(2):436–446.
  • Cregan PB, Jarvik T, Bush AL, et al. An integrated genetic map of the soybean genome. Crop Sci. 1999;39(5):1464–1490.
  • Song QJ, Marek LF, Shoemaker RC, et al. A new integrated genetic linkage map of the soybean. Theor Appl Genet. 2004;109(1):122–128.
  • Choi IY, Hyten DL, Matukumalli LK, et al. A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics. 2007;176(1):685–696.
  • Hyten DL, Choi IY, Song QL, et al. A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping. Crop Sci. 2010;50(3):960–968.
  • Hyten DL, Cannon SB, Song QL, et al. High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genom. 2010;11:38.
  • Gahlaut V, Jaiswal V, Tyagi BS, et al. QTL mapping for nine drought-responsive agronomic traits in bread wheat under irrigated and rain-fed environments. PLoS ONE. 2017;12(8):e0182857.
  • Zheng ZP, Liu XH. Genetic analysis of agronomic traits associated with plant architecture by QTL mapping in maize. Genet Mol Res. 2013;12(2):1243–1253.
  • Zhao X, Peng Y, Zhang J, et al. Identification of QTLs and meta-QTLs for seven agronomic traits in multiple maize populations under well-watered and water-stressed conditions. Crop Sci. 2018;58(2):507–520.
  • Wu Q, Qi ZM, Liu CY, et al. An integrated QTL map of growth stage in soybean [Glycine max (L.) Merr.]: constructed through meta-analysis. Acta Agron Sin. 2010;35(8):1418–1424.
  • Hacisalihoglu G, Burton AL, Gustin JL, et al. Quantitative trait loci associated with soybean seed weight and composition under different phosphorus levels. J Integr Plant Biol. 2018;60(3):232–241.
  • Ning H, Yuan J, Dong Q, et al. Identification of QTLs related to the vertical distribution and seed-set of pod number in soybean [Glycine max (L.) Merri]. PLoS ONE. 2018;13(4):e0195830.
  • Lee S, Jun TH, Michel AP, et al. SNP markers linked to QTL conditioning plant height, lodging, and maturity in soybean. Euphytica. 2015;203(3):521–532.
  • Liang Q, Cheng X, Mei M, et al. QTL analysis of root traits as related to phosphorus efficiency in soybean. Ann Bot. 2010;106(1):223–234.
  • Jiang B, Yu S, Xiao B, et al. Constructing linkage map based on a four-way cross population. J Zhejiang Univ. 2014;40:387–396.
  • Tong CF, Zhang B, Shi JS. A hidden Markov model approach to multilocus linkage analysis in a full-sib family. Tree Genet Genomes. 2010;6(5):651–662.
  • Lee SH, Bailey MA, Mian MA, et al. RFLP loci associated with soybean seed protein and oil content across populations and locations. Theor Appl Genet. 1996;93:649–657.
  • Warrington CV, Abdel-Haleem H, Hyten DL, et al. QTL for seed protein and amino acids in the Benning × Danbaekkong soybean population. Theor Appl Genet. 2015;128(5):839–850.
  • Wang X, Jiang GL, Green M, et al. Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean. Mol Genet Genomics. 2014;289(5):935–949.
  • Zhang D, Cheng H, Wang H, et al. Identification of genomic regions determining flower and pod numbers development in soybean (Glycine max L.). J Genet Genomics. 2010;37(8):545–556.
  • Brummer EC, Graef GL, Orf J, et al. Mapping QTL for seed protein and oil content in eight soybean populations. Crop Sci. 1997;37(2):370–378.
  • Jun TH, Van K, Kim MY, et al. Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica. 2008;162(2):179–191.
  • Liang HZ, Yu YL, Wang SF, et al. QTL mapping of isoflavone, oil and protein contents in soybean (Glycine max L. Merr.). J Integr Agric. 2010;9:1108–1116.
  • Lu W, Li H, Yuan D, et al. Identification of the quantitative trait loci (QTL) underlying water soluble protein content in soybean. Theor Appl Genet. 2013;126(2):425–433.
  • Mansur LM, Orf JH, Chase K, et al. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci. 1996;36(5):1327–1336.
  • Chung J, Babka HL, Graef GL, et al. The seed protein oil and yield QTL on soybean linkage group I. Crop Sci. 2003;43(3):1053–1067.
  • Mukhtarov AS. Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Sci. 2000;40:1438–1444.
  • Nichols DM, Glover KD, Carlson SR, et al. Fine mapping of a seed protein QTL on soybean linkage group I and its correlated effects on agronomic traits. Crop Sci. 2006;46(2):834–839.
  • Reinprecht Y, Poysa VW, Yu K, et al. Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm. Genome. 2006;49(12):1510–1527.
  • Sudhakar P, Agnieszka P, Molnar P, et al. Relationship between asparagine metabolism and protein concentration in soybean seed. J Exp Bot. 2012;63:3173–3184.
  • Chen QS, Zhang ZC, Liu CY, et al. QTL analysis of major agronomic traits in soybean. J Integr Agric (农业科学学报(英文)). 2007;6:399–405.
  • Wang X, Jiang GL, Green M, et al. Quantitative trait locus analysis of saturated fatty acids in a population of recombinant inbred lines of soybean. Mol Breeding. 2012;30(2):1163–1179.
  • Li H, Zhao T, Wang Y, et al. Genetic structure composed of additive QTL, epistatic QTL pairs and collective unmapped minor QTL conferring oil content and fatty acid components of soybeans. Euphytica. 2011;182(1):117–132.
  • Pathan SM, Vuong T, Clark K, et al. Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean. Crop Sci. 2013;53(3):765–774.
  • Liu N, Mu L, Hu X, et al. Construction of high-density genetic map and QTL mapping of yield-related and two quality traits in soybean RILs population by RAD-sequencing. BMC Genomics. 2017;18(1):466. [cited 2019 Jul 22].
  • Jiang H, Li Y, Qin H, et al. Identification of major QTLs associated with first pod height and candidate gene mining in soybean. Front Plant Sci. 2018;9.
  • Zheng H, Von Mollard GF, Kovaleva V, et al. The plant vesicle-associated SNARE AtVTI1a likely mediates vesicle transport from the trans-Golgi network to the prevacuolar compartment. Mol Biol Cell. 1999;10(7):2251–2264.
  • Hara-Nishimura I, Shimada T, Hatano K, et al. Transport of storage proteins to protein storage vacuoles is mediated by large precursor-accumulating vesicles. Plant Cell. 1998;10(5):825–836.
  • Stenbeck G, Harter C, Brecht A, et al. Beta′‐COP, a novel subunit of coatomer. EMBO J. 1993;12(7):2841–2845.
  • Belles-Boix E, Babiychuk E, Montagu MV, et al. CEF, a sec24 homologue of Arabidopsis thaliana, enhances the survival of yeast under oxidative stress conditions. J Exp Bot. 2000;51(351):1761–1762.
  • Chevalier D, Walker JC. Functional genomics of protein kinases in plants. Brief Funct Genom. 2005;3(4):362–371.
  • Xue-Fei D, Na C, Li W, et al. The SnRK protein kinase family and the function of SnRK1 protein kinase. Int J Agric Biol. 2012;14(4):575–579.
  • Shukla V, Mattoo AK. Sucrose non-fermenting 1-related protein kinase 2 (SnRK2): a family of protein kinases involved in hyperosmotic stress signaling. Physiol Mol Biol Plants. 2008;14(1–2):91–100.
  • Schmidt RC, Müller A, Hain R, et al. Transgenic tobacco plants expressing the Arabidopsis thaliana nitrilase II enzyme. Plant J. 1996;9(5):683–691.
  • Kim DH, Kang JG, Yang SS, et al. A phytochrome-associated protein phosphatase 2A modulates light signals in flowering time control in Arabidopsis. Plant Cell. 2002;14(12):3043–3056.
  • De Jong M, Wolters-Arts M, Schimmel BC, et al. Solanum lycopersicum AUXIN RESPONSE FACTOR 9 regulates cell division activity during early tomato fruit development. J Exp Bot. 2015;66(11):3405–3416.
  • Ritter B, Philie J, Girard M, et al. Identification of a family of endocytic proteins that define a new α‐adaptin ear‐binding motif. EMBO Rep. 2003;4(11):1089–1093.
  • Blackbourn HD, Jackson AP. Plant clathrin heavy chain: sequence analysis and restricted localisation in growing pollen tubes. J Cell Sci. 1996;109(4):777–786.
  • Eisenberg D, Gill HS, Pfluegl GM, et al. Structure–function relationships of glutamine synthetases. Biochim Biophys Acta (BBA) – Protein Struct Mol Enzym. 2000;1477(1–2):122–145.
  • Miller EA, Beilharz TH, Malkus PN, et al. Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell. 2003;114(4):497–509.
  • Tamura K, Hara-Nishimura I. Functional insights of nucleocytoplasmic transport in plants. Front Plant Sci 2014;5:118.