1,703
Views
2
CrossRef citations to date
0
Altmetric
Articles

Yeast strains from coconut toddy in Sri Lanka show high tolerance to inhibitors derived from the hydrolysis of lignocellulosic materials

, &
Pages 1505-1515 | Received 29 Jun 2019, Accepted 30 Sep 2019, Published online: 14 Oct 2019

References

  • Ahangangoda AMS, Yoshida S, Toyama H. Thermo-and salt-tolerant Saccharomyces cerevisiae strains isolated from fermenting coconut toddy from Sri Lanka. Biotechnol Biotechnol Equip. 2019;33:1–8.
  • Gutiérrez-Rivera B, Waliszewski-Kubiak K, Carvajal-Zarrabal O. Conversion efficiency of glucose/xylose mixtures for ethanol production using Saccharomyces cerevisiae ITV01 and Pichia stipitis NRRL Y-7124. J Chem Technol Biotechnol. 2012;87(2):263–270.
  • Narayanan V, Schelin J, Gorwa-Grauslund M, et al. Increased lignocellulosic inhibitor tolerance of Saccharomyces cerevisiae cell populations in early stationary phase. Biotechnol Biofuels. 2017;10(1):114.
  • Ishola MM, Isroi, Taherzadeh MJ. Effect of fungal and phosphoric acid pretreatment on ethanol production from oil palm empty fruit bunches (OPEFB). Bioresour Technol. 2014;165:9–12.
  • Tesfaw A, Assefa F. Current trends in bioethanol production by Saccharomyces cerevisiae: substrate, inhibitor reduction, growth variables, coculture, and immobilization. Int Sch Res Notices. 2014;2014:532852 [11 pages].
  • Zaldivar J, Nielsen J, Olsson L. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol. 2001;56(1–2):17–34.
  • Gray KA, Zhao L, Emptage M. Bioethanol. Curr Opin Chem Biol. 2006;10(2):141–146.
  • Endo A, Nakamura T, Shima J. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. FEMS Microbiol Lett. 2009;299(1):95–99.
  • McMillan DJ. Bioethanol production: status and prospects. Renew Energy. 1997;10(2–3):295–302.
  • Olsson L, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol. 1996;18(5):312–331.
  • Klinke HB, Thomsen AB, Ahring BK. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol. 2004;66(1):10–26.
  • Theivendirarajah K, Chrystopher RK. Microflora and microbial activity in palmyrah (Borassus flabellifer) palm wine in Sri Lanka. Mircen J. 1987;3(1):23–31.
  • Bettiga M, Bengtsson O, Hahn-Hägerdal B, et al. Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microb Cell Fact. 2009;8(1):40.
  • Knox AM, Du Preez JC, Kilian SG. Starch fermentation characteristics of Saccharomyces cerevisiae strains transformed with amylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Enzyme Microb Technol. 2004;34(5):453–460.
  • Larsson S, Palmqvist E, Hahn-Hägerdal B, et al. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol. 1999;24(3–4):151–159.
  • Larsson S, Quintana-Sáinz A, Reimann A, et al. Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Appl Biochem Biotechnol. 2000;84–86(1–9):617–632.
  • Takagi H, Hashida K, Watanabe D, et al. Isolation and characterization of awamori yeast mutants with l-leucine accumulation that overproduce isoamyl alcohol. J Biosci Bioeng. 2015;119(2):140–147.
  • Li M, Yang Z, Yang M, et al. Determination of furfural in beer by high-performance liquid chromatography with solid-phase extraction. J Inst Brew. 2009;115(3):226–231.
  • Ameyama M. Enzymic microdetermination of d-glucose, d-fructose, d-gluconate, 2-keto-d-gluconate, aldehyde, and alcohol with membrane-bound dehydrogenase; carbohydrate metabolism. In: Wood WA, editor. Methods in enzymology. Vol. 89. Michigan: Elsevier Academic Press; 1982. p. 20–29.
  • Fitzgerald DJ, Stratford M, Narbad A. Analysis of the inhibition of food spoilage yeasts by vanillin. Int J Food Microbiol. 2003;86(1–2):113–122.
  • Elvis FK, Sanette M, Anton M. Simulated inhibitory effects of typical byproducts of biomass pretreatment process on the viability of Saccharomyces cerevisiae and bioethanol production yield. Afr J Biotechnol. 2015;14(30):2383–2394.
  • Moreno AD, Ibarra D, Ballesteros I, et al. Comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase. Bioresour Technol. 2013;135:239–245.
  • Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II. Inhibitors and mechanisms of inhibition. Bioresour Technol. 2000;74(1):25–33.
  • Shen Y, Li H, Wang X, et al. High vanillin tolerance of an evolved Saccharomyces cerevisiae strain owing to its enhanced vanillin reduction and antioxidative capacity. J Ind Microbiol Biotechnol. 2014;41(11):1637–1645.
  • De Wulf O, Thonart P. Bioconversion of vanillin to vanillyl alcohol in a two-phase reactor. Appl Biochem Biotechnol. 1989;20–21(1):165–180.
  • Endo A, Nakamura T, Ando A, et al. Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Biotechnol Biofuels. 2008;1(1):3.
  • Iwaki A, Ohnuki S, Suga Y, et al. Vanillin inhibits translation and induces messenger ribonucleoprotein (mRNP) granule formation in Saccharomyces cerevisiae: application and validation of high-content, image-based profiling. PLoS One. 2013;8(4):e61748–11. [cited 2018 Feb 02].
  • Krouwel PG, Braber L. Ethanol production by yeast at supraoptimal temperatures. Biotechnol Lett. 1979;1(10):403–408.
  • Heipieper HJ, Weber FJ, Sikkema J, et al. Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol. 1994;12(10):409–415.
  • Antal MJ, Mok WSL, Richards GN. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose. Carbohydr Res. 1990;199(1):91–109.
  • Liu ZL, Slininger PJ, Dien BS, et al. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol. 2004;31(8):345–352.
  • Taherzadeh MJ, Gustafsson L, Niklasson C, et al. Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2000;53(6):701–708.
  • Liu ZL, Moon J. A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Gene. 2009;446(1):1–10.
  • Almedia JRM, Modig T, Petersson A, et al. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharmyces cerevisiae. J Chem Technol Biotechnol. 2007;82:1115–1121.
  • Sasano Y, Watanabe D, Ukibe K, et al. Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production. J Biosci Bioeng. 2012;113(4):451–455.
  • Liu ZL, Slininger PJ, Gorsich SW. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol. 2005;121:451–460.
  • Taherzadeh MJ, Gustafsson L, Niklasson C, et al. Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. J Biosci Bioeng. 1999;87(2):169–174.
  • Wang C-F, Zhang X-Y, Xu Z-H, et al. Selective synthesis of furfuryl alcohol from biomass-derived furfural using immobilized yeast cells. Catalysts. 2019;9:70.
  • Sárvári Horváth I, Franzén CJ, Taherzadeh MJ, et al. Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats. Appl Environ Microbiol. 2003;69:4076–4086.
  • Iwaki A, Kawai T, Yamamoto Y, et al. Biomass conversion inhibitors furfural and 5-hydroxymethylfurfural induce formation of messenger RNP granules and attenuate translation activity in Saccharomyces cerevisiae. Appl Environ Microbiol. 2013;79(5):1661–1667.
  • Buchan JR, Muhlrad D, Parker R. P bodies promote stress granule assembly in Saccharomyces cerevisiae. J Cell Biol. 2008;183(3):441–455.
  • Balagopal V, Parker R. Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs. Curr Opin Cell Biol. 2009;21(3):403–408.
  • Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. I. Inhibition and detoxification. Bioresour Technol. 2000;74(1):17–24.
  • Russell JB. Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. J Appl Bacteriol. 1992;73(5):363–370.
  • Narendranath NV, Thomas KC, Ingledew WM. Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J Ind Microbiol Biotechnol. 2001;26(3):171–177.
  • Guo ZP, Olsson L. Physiological responses to acid stress by Saccharomyces cerevisiae when applying high initial cell density. FEMS Yeast Res. 2016;16:1–11.
  • Guo Z, Olsson L. Physiological response of Saccharomyces cerevisiae to weak acids present in lignocellulosic hydrolysate. FEMS Yeast Res. 2014;14(8):1234–1248.