1,354
Views
9
CrossRef citations to date
0
Altmetric
Articles

Modelling and optimisation of temperature and force behaviour in high-speed bone drilling

, , &
Pages 1616-1625 | Received 17 Jun 2019, Accepted 22 Oct 2019, Published online: 13 Nov 2019

References

  • Hillery MT, Shuaib I. Temperature effects in the drilling of human and bovine bone. J Mater Process Technol. 1999;92:302–308.
  • Sui J, Sugita N, Ishii K, et al. Mechanistic modeling of bone-drilling process with experimental validation. J Mater Process Technol. 2014;214(4):1018–1026.
  • Bachus KN, Rondina MT, Hutchinson DT. The effects of drilling force on cortical temperatures and their duration: an in vitro study. Med Eng Phys. 2000;22(10):685–691.
  • Eriksson R, Albrektsson T. The effect of heat on bone regeneration: an experimental study in the rabbit using the bone growth chamber. J Oral Maxillofac Surg. 1984;42(11):705–711.
  • Moritz AR, Henriques F, Jr. Studies of thermal injury: II. Am J Pathol. 1947;23(5):695.
  • Pandey RK, Panda SS. Optimization of multiple quality characteristics in bone drilling using grey relational analysis. J Orthop. 2015;12(1):39–45.
  • Bogovič V, Svete A, Rupnik K, et al. Experimental analysis of the temperature rise during the simulation of an implant drilling process using experimental designs. Measurement 2015;63:221–231.
  • Lundskog J. Heat and bone tissue. An experimental investigation of the thermal properties of bone and threshold levels for thermal injury. Scand J Plast Reconstr Surg. 1972;9:72–74.
  • Alam K, Mitrofanov A, Silberschmidt VV. Experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone. Med Eng Phys. 2011;33(2):234–239.
  • Tahmasbi V, Ghoreishi M, Zolfaghari M. Sensitivity analysis of temperature and force in robotic bone drilling process using Sobol statistical method. Biotechnol Biotechnol Equip. 2018;32(1):130–141.
  • Tahmasbi V, Ghoreishi M, Zolfaghari M. Investigation, sensitivity analysis, and multi-objective optimization of effective parameters on temperature and force in robotic drilling cortical bone. Proc Inst Mech Eng H. 2017;231(11):1012–1024.
  • Lee J, Gozen BA, Ozdoganlar OB. Modeling and experimentation of bone drilling forces. J Biomech. 2012;45(6):1076–1083.
  • Abouzgia MB, James DF. Temperature rise during drilling through bone. Int J Oral Maxillofac Implant. 1997;12(3):342–353.
  • Reingewirtz Y, Szmukler‐Moncler S, Senger B. Influence of different parameters on bone heating and drilling time in implantology. Clin Oral Implants Res. 1997;8(3):189–197.
  • Shakouri E, Sadeghi M, Maerefat M. Experimental investigation of Thermal Necrosis in conventional and High speed drilling of Bone. Modares Mech Eng. 2013;13(10):105–117.
  • Boyne PJ. Histologic response of bone to sectioning by high-speed rotary instruments. J Dent Res. 1966;45(2):270–276.
  • Moss RW. Histopathologic reaction of bone to surgical cutting. Oral Surg Oral Med Oral Pathol. 1964;17(3):405–414.
  • Udiljak T, Ciglar D, Skoric S. Investigation into bone drilling and thermal bone necrosis. Adv Prod Eng Manage. 2007;2(3):103–112.
  • Karaca F, Aksakal B, Kom M. Influence of orthopaedic drilling parameters on temperature and histopathology of bovine tibia: an in vitro study. Med Eng Phys. 2011;33(10):1221–1227.
  • Iyer S, Weiss C, Mehta A. Effects of drill speed on heat production and the rate and quality of bone formation in dental implant osteotomies. Part I: relationship between drill speed and heat production. Int J Prosthodont. 1997;10(6):536–540.
  • Heydari H, Cheraghi Kazerooni N, Zolfaghari M, et al. Analytical and experimental study of effective parameters on process temperature during cortical bone drilling. Proc Inst Mech Eng H. 2018;232(9):871–883.
  • Boiadjiev T, Boiadjiev G, Delchev K, et al. Far cortex automatic detection aimed for partial or full bone drilling by a robot system in orthopaedic surgery. Biotechnol Biotechnol Equip. 2017;31(1):200–205.
  • Augustin G, Davila S, Mihoci K, et al. Thermal osteonecrosis and bone drilling parameters revisited. Arch Orthop Trauma Surg. 2007;128(1):71–77.
  • Pandey RK, Panda S. Optimization of bone drilling parameters using grey-based fuzzy algorithm. Measurement 2014;47:386–392.
  • Pandey RK, Panda SS. Optimization of bone drilling using Taguchi methodology coupled with fuzzy based desirability function approach. J Intell Manuf. 2015;26(6):1121–1129.
  • Boiadjiev G, Delchev K, Boiadjiev T, et al. Controlled trust force influence on automatic bone drilling parameters in the orthopedic surgery. Int J Pure Appl Math. 2013;88(4):577–592.
  • Boiadjiev G, Kastelov R, Boiadjiev T, et al. Design and performance study of an orthopaedic surgery robotized module for automatic bone drilling. Int J Med Robotics Comput Assist Surg. 2013;9(4):455–463.
  • Myers RH, Montgomery DC, Vining GG, et al. Response surface methodology: a retrospective and literature survey. J Qual Technol. 2004;36(1):53–77.
  • Wang W, Shi Y, Yang N, et al. Experimental analysis of drilling process in cortical bone. Med Eng Phys. 2014;36(2):261–266.
  • Alam K, Mitrofanov A, Silberschmidt V. Measurements of surface roughness in conventional and ultrasonically assisted bone drilling. Am J Biomed Sci. 2009;1(4):312–320.
  • Pandey RK, Panda S. Multi-performance optimization of bone drilling using Taguchi method based on membership function. Measurement 2015;59:9–13.
  • Staroveski T, Brezak D, Udiljak T. Drill wear monitoring in cortical bone drilling. Med Eng Phys. 2015;37(6):560–566.
  • Montgomery DC. Design and analysis of experiments. Hoboken (NJ): John Wiley & Sons; 2017.
  • Singh G, Jain V, Gupta D, et al. Optimization of process parameters for drilled hole quality characteristics during cortical bone drilling using Taguchi method. J Mech Behav Biomed Mater. 2016;62:355–365.