1,352
Views
7
CrossRef citations to date
0
Altmetric
Article

Mixed bacterial fermentation can control the growth and development of Verticillium dahliae

, , , &
Pages 58-69 | Received 16 Aug 2019, Accepted 03 Jan 2020, Published online: 20 Jan 2020

References

  • Woolliams GE. Host range and symptomatology of Verticillium dahliae in economic, weed, and native plants in interior British Columbia. Can J Plant Sci. 1966;46(6):661–669.
  • Krikun J, Bernier CC. Infection of several crop species by two isolates of Verticillium dahliae. Can J Plant Pathol. 1987;9(3):241–245.
  • Huang JL, Li HL, Yuan HX. Effect of organic amendments on Verticillium wilt of cotton. Crop Prot. 2006a;25(11):1167–1173.
  • Klosterman SJ, Atallah ZK, Vallad GE, et al. Diversity, pathogenicity, and management of Verticillium species. Annu Rev Phytopathol. 2009;47(1):39–62.
  • Bleve G, Grieco F, Cozzi G, et al. Isolation of epiphytic yeasts with potential for biocontrol of Aspergillus carbonarius and A. niger on grape. Int J Food Microbiol. 2006;108(2):204–209.
  • Paolo C, Angioni A. Pesticide residues in grapes, wine, and their processing products. J Agric Food Chem. 2000;48(4):967–973.
  • Gil-Serna J, Patiño B, Cortés L, et al. Mechanisms involved in reduction of ochratoxin A produced by Aspergillus westerdijkiae using Debaryomyces hansenii CYC. Int J Food Microbiol. 2011;151(1):113–118.
  • Berg G. Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agricultur. Appl Microbiol Biotechnol. 2009;84(1):11–18.
  • Gomez LCC, Schiliro E, Valverde CA, et al. The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces plant systemic defense responses in aerial tissues upon colonization of olive roots. Front Microbiol. 2014;5(427):1–14.
  • Brader G, Compant S, Mitter B, et al. Metabolic potential of endophytic bacteria. Curr Opin Biotechnol. 2014;27:30–37.
  • Scherlach K, Hertweck C. Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem. 2009;7(9):1753–1760.
  • Chagas FO, Dias LG, Pupo MT. A mixed culture of endophytic fungi increases production of antifungal polyketides. J Chem Ecol. 2013;39(10):1335–1342.
  • Pettit RK. Small-molecule elicitation of microbial secondary metabolites. Microb Biotechnol. 2011;4(4):471–478.
  • Thomas D, Heinze S, Schlegel B, et al. Formation of new lipoaminopeptides, acremostatins A, B, and C, by Co-cultivation of Acremonium sp. Tbp-5 and Mycogone rosea DSM 12973. Biosci Biotechnol Biochem. 2002;66(4):883–886.
  • Glauser G, Gindro K, Fringeli J, et al. Differential analysis of mycoalexins in confrontation zones of grapevine fungal pathogens by ultrahigh pressure liquid chromatography/time-of-flight mass spectrometry and capillary nuclear magnetic resonance. J Agric Food Chem. 2009;57(4):1127–1134.
  • Pettit RK, Repp KK, Hazen KC. Temperature affects the susceptibility of Cryptococcus neoformans biofilms to antifungal agents. Med Mycol. 2010;48(2):421–426.
  • Yashavantha Rao HC. A Co-culture of microbial endosymbionts increases the production of antimicrobial polyketide metabolites. EC Microbiol ECO. 2017;01:41–42.
  • Kusari S, Hertweck C, Spiteller M. Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol. 2012;19(7):792–798.
  • Vanitha SC, Umesha S. Pseudomonas fluorescens mediated systemic resistance in tomato is driven through an elevated synthesis of defense enzymes. Biol Plant. 2011;55(2):317–322.
  • Han Q, Wu F, Wang X, et al. The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen-associated molecular pattern-triggered immunity. Environ Microbiol. 2015; 17(4):1166–1188.
  • Liang M. Screening of abnormal nuclear development mutants and identification of related genes in Rotadella dahlia. Nanjing (China): Nanjing Normal University; 2015.
  • De Souza JRB, Kupper KC, Augusto F. In vivo investigation of the volatile metabolome of antiphytopathogenic yeast strains against Penicillium digitatum using comprehensive two dimensional gas chromatography and multivariate data analysis. Microchemistry. 2018;141:204–209. [
  • Li N, Wang W, Bitas V, et al. Volatile compounds emitted by diverse Verticillium species enhance plant growth by manipulating auxin signaling. MPMI. 2018;31(10):1021–1031.
  • Yang Y, Wu ZM, Li KT. The peculiar physiological responses of Rhizoctonia solani under the antagonistic interaction coupled by a novel antifungalmycin N2 from Streptomyces sp. N2. Arch Microbiol. 2019;201(6):787–794.
  • Xu L, Zhu L, Zhang X. Research on resistance mechanism of cotton to Verticillium wilt. AAS. 2013;38(9):1553–1560.
  • Zhu HQ, Zili F, Yin Z, et al. Pathogenicity differentiation and ISSR fingerprint analysis of cotton Verticillium dahliae in China. Acta Phytopathol Sin. 2012;42(3):225–235.
  • Wolfgang A, Taffner J, Guimarães RA, et al. Novel strategies for soil-borne diseases: exploiting the microbiome and volatile-based mechanisms toward controlling meloidogyne-based disease complexes. Front Microbiol. 2019;10:1296.
  • Regev U, Gutierrez AP, DeVay JE, et al. Optimal strategies for management of Verticillium wilt. Agric Syst. 1990;33(2):139–152.
  • Kefalogianni I, Gkizi D, Pappa E, et a1. Combined use of biocontrol agents and zeolite as a management strategy against Fusarium and Verticillium wilt. BioControl. 2017; 62(2):139–150.
  • Yu GY, Sinclair JB, Hartman GL, et al. Production of iturin A by Bacillus amyloliquefaciens, suppressing Rhizoctonia solani. Soil Biol Biochem. 2002;34(7):955–963.
  • Das P, Mukherjee S, Sen R. Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J Appl Microbiol. 2008;104(6):1675–1684.
  • Zhang QH, Yang L, Zhang J, et al. Production of anti-fungal volatiles by non-pathogenic Fusarium oxysporum and its efficacy in suppression of Verticillium wilt of cotton. Plant Soil. 2015;392(1-2):101–114.
  • Garas NA, Acjr W. Differential accumulation and distribution of antifungal sesquiterpenoids in cotton stems inoculated with Verticillium dahliae. Phytopathology. 1986;84(11):4097–4105.
  • Liu HY, Wang W, Zhang RF, et al. A survey of cotton wilt in the main cotton areas of Xinjiang. Plant Protect. 2015;41(3):138–142.
  • Yin XS, Liu RJ. Research progress on cotton Verticillium wilt. Chin Cotton. 1996;5:2–6.
  • Huang WK, Cui JK, Liu SM, et al. Testing various biocontrol agents against the root-knot nematode (Meloidogyne incognita) in cucumber plants identifies a combination of Syncephalastrum racemosum, and Paecilomyces lilacinus, as being most effective. Biol Control. 2016; 92:31–37.
  • Zhou ZH, Zhang TZ, Pan JJ, et al. Pathogenicity differentiation of Verticillium fungus on cotton varieties. Chin Agric Sci. 2000; 33(2):51–57.
  • Li GY, Zhang XQ, Song YP, et al. Study on the occurrence trend and resistance of cotton Verticillium in cotton area of northern Xinjiang. Xinjiang Agric Sci. 2015;01:185–190.
  • Ding Y, Sun T, Ao K, et al. Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. Cell. 2018;173(6):1454–1467.
  • Jingo S, Jiang L, Yang J, et al. Over-expression of Oryza sativa Xrn4 confers plant resistance to virus infection. Gene 2018;639:44–51.
  • Xu Y, Zhang Y, Cheng Y, et al. Transcriptome analysis reveals multiple signal network contributing to the Verticillium wilt resistance in eggplant. Sci Hort. 2019;256:108576.