934
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Characterization of LcGAPC and its transcriptional response to salt and alkali stress in two ecotypes of Leymus chinensis (Trin.) Tzvelev

, , , &
Pages 115-125 | Received 30 Jun 2019, Accepted 16 Jan 2020, Published online: 10 Feb 2020

References

  • Ahmadi J, Pour-Aboughadareh A, Fabriki-Ourang S, et al. Screening wild progenitors of wheat for salinity stress at early stages of plant growth: insight into potential sources of variability for salinity adaptation in wheat. Crop Pasture Sci. 2018;69(7):649–658.
  • Li YF, Li QY, Guo DY, et al. Ecological stoichiometry homeostasis of Leymus chinensis in degraded grassland in western Jilin Province, NE China. Ecol Eng. 2016;90:387–391.
  • Yuan S, Ma LN, Guo CY, et al. What drives phenotypic divergence in Leymus chinensis (Poaceae) on large-scale gradient, climate or genetic differentiation? Sci Rep. 2016;6(1):26288.
  • Liu YJ, Zhang LR, Xu XL, et al. Effects of sampling method on foliar δ13C of Leymus chinensis at different scales. Ecol Evol. 2015;5(5):1068–1075.
  • Zhou C, Yang YF, Li JD. Physiological response of two divergent Leymus chinensis types to drought stress in the Songnen plain. Ying Yong Sheng Tai Xue Bao. 2002;13(9):1109–1112.
  • Zhou C, Yang YF. Physiological response to salt-alkali stress in experimental populations in two ecotypes of Leymus chinensis in the Songnen Plains of China. Chin J Appl Ecol. 2003;14(11):1842–1846.
  • Zhou C, Yang YF, Wang K, et al. Effect of red and blue spectrum on photosynthesis physiological characteristics of two ecotypes of Leymus Chinensis. Spectrosc Spect Anal. 2008;28(7):1441–1444.
  • Yang AJ, Anjum SA, Wang L, et al. Effect of foliar application of brassinolide on photosynthesis and chlorophyll fluorescence traits of Leymus chinensis under varying levels of shade. 2018;56(3):873–883.
  • Chen L, Wang RZ. Anatomical and physiological divergences and compensatory effects in two Leymus chinensis (Poaceae) ecotypes in Northeast China. Agr Ecosyst Environ. 2009;134(1–2):46–52.
  • Khanna MS, Taxak CP, Jain KP, et al. Glycolytic enzyme activities and gene expression in Cicer arietinum exposed to water-deficit stress. Appl Biochem Biotechnol. 2014;173(8):2241–2253.
  • Dumont S, Rivoal J. Consequences of oxidative stress on plant glycolytic and respiratory metabolism. Front Plant Sci. 2019;10:166.
  • Suarez S, McCollum GW, Jayagopal A, et al. High glucose-induced retinal pericyte apoptosis depends on association of GAPDH and Siah1. J Biol Chem. 2015;290(47):28311–28320.
  • Li XX, Wei WJ, Li FF, et al. The plastidial glyceraldehyde-3-phosphate dehydrogenase is critical for abiotic stress response in wheat. Int J Mol Sci. 2019;20(5):1104–1122.
  • Yang SS, Zhai QH. Cytosolic GAPDH: a key mediator in redox signal transduction in plants. Biol Plant. 2017;61(3):417–426.
  • Zaffagnini M, Fermani S, Costa A, et al. Plant cytoplasmic GAPDH: redox post-translational modifications and moonlighting properties. Front Plant Sci. 2013; 450:1–18.
  • Zeng LF, Deng R, Guo ZP, et al. Genome-wide identification and characterization of Glyceraldehyde-3-phosphate dehydrogenase genes family in wheat (Triticum aestivum). BMC Genom. 2016;17(1):240.
  • Roth U, von Roepenack-Lahaye E, Clemens S. Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+. J Exp Bot. 2006;57(15):4003–4013.
  • Yao HY, Xue HW. Phosphatidic acid plays key roles regulating plant development and stress responses. J Integr Plant Biol. 2018;60(9):851–863.
  • Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. Calif Agricult Exp Stat Circular. 1950;347:1–32.
  • Wang H, Wu Z, Chen Y, et al. Effects of salt and alkali stresses on growth and ion balance in rice (Oryza sativa L.). Plant Soil Environ. 2011;6:286–294.
  • Luo M, Gao Z, Li H, et al. Selection of reference genes for miRNA qRT-PCR under abiotic stress in grapevine. Sci Rep. 2018;8(1):4444.
  • Tien YC, Chuankhayan P, Huang YC, et al. Crystal structures of rice (Oryza sativa) glyceraldehyde-3-phosphate dehydrogenase complexes with NAD and sulfate suggest involvement of Phe37 in NAD binding for catalysis. Plant Mol Biol. 2012;80(4–5):389–403.
  • Rena L, Yong S. An old method facing a new challenge: re-visiting housekeeping proteins as internal reference control for neuroscience research. Life Sci. 2013;92(13):747–751.
  • Zhou C, Zhang Z, Wang ZW, et al. Difference in capacity of physiological integration between two ecotypes of Leymus chinensis underlies their different performance. Plant Soil. 2014;383(1–2):191–202.
  • Guo L, Devaiah SP, Narasimhan R, et al. Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. Plant Cell. 2012;24(5):2200–2212.
  • Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59(1):651–681.
  • Li JX, Peng XY, Hua XY, et al. Effects of arbuscular mycorrhizal fungi on Leymus chinensis seedlings under salt–alkali stress and nitrogen deposition conditions: from osmotic adjustment and ion balance. RSC Adv. 2018;8:14500–14509.
  • Lin JX, Wang YN, Sun SN, et al. Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Sci Total Environ. 2017;576(15):234–241.
  • Zhang XH, Rao XL, Shi HT, et al. Overexpression of a cytosolic glyceraldehyde-3-phosphate dehydrogenase gene OsGAPC3 confers salt tolerance in rice. Plant Cell Tiss Organ Cult. 2011;107(1):1–11.
  • Liang WJ, Ma XL, Wan P, et al. Plant salt-tolerance mechanism: a review. Biochem Bioph Res Co. 2018;495(1):286–291.
  • Wang LX, Fang C, Wang K. Physiological responses of Leymus chinensis to long-term salt, alkali and mixed salt-alkali stresses. J Plant Nutr. 2015;38(4):526–540.