5,819
Views
23
CrossRef citations to date
0
Altmetric
Review

Medicinal plants with anti-mutagenic potential

, , , , , , , , & show all
Pages 309-318 | Received 09 Oct 2019, Accepted 05 Mar 2020, Published online: 10 Apr 2020

References

  • Gurib-Fakim A. Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Aspects Med. 2006;27(1):1–93.
  • Zamora-Martínez MC, de Pascual Pola CN. Medicinal plants used in some rural populations of Oaxaca, Puebla and Veracruz, Mexico. J Ethnopharmacol. 1992;35(3):229–257.
  • Dar RA, Shahnawaz M, Qazi PH. General overview of medicinal plants: a review. J Phytopharmacol. 2017;6(6):349–351.
  • Taylor J, Rabe T, McGaw LJ, et al. Towards the scientific validation of traditional medicinal plants. Plant Growth Regul. 2001;34(1):23–37.
  • White SD. Deciphering integrated Chinese and ‘Western medicine’ in the rural Lijiang basin: state policy and local practice (s) in socialist China. Social Sci Med (1982). 1999;49(10):1333–1347.
  • Reid A-M, Oosthuizen CB, Fibrich BD, et al. Traditional medicine: the ancient roots of modern practice. Chap 1. In: Lall M, editor. Medicinal plants for holistic health and well-being. London (UK): Elsevier; 2018. p. 1–11.
  • Raskin I, Ribnicky DM, Komarnytsky S, et al. Plants and human health in the twenty-first century. TRENDS Biotechnol. 2002;20(12):522–531.
  • Veiga M, Costa EM, Silva S, et al. Impact of plant extracts upon human health: a review. Crit Rev Food Sci Nutr. 2020;60(5):873–814.
  • Lee H, Lin J-Y. Antimutagenic activity of extracts from anticancer drugs in Chinese medicine. Mutat Res/Genet Toxicol. 1988;204(2):229–234.
  • Guo W, Tai H-Y, Wang N, et al. Chinese medicines for cancer treatment from the metabolomics perspective. In: Metabolomics-new insights into biology and medicine. London, UK: IntechOpen; 2019. p. 1–27. Available from: https://cdn.intechopen.com/pdfs/68857.pdf.
  • Liu MM, Huang KM, Qian L, et al. Effects of bioactive constituents in the Traditional Chinese medicinal formula Si–Wu–Tang on Nrf2 signaling and neoplastic cellular transformation. Phytomedicine. 2018;40:1–9.
  • Sukumaran K, Kuttan R. Inhibition of tobacco-induced mutagenesis by eugenol and plant extracts. Mutat Res/Genet Toxicol. 1995;343(1):25–30.
  • Jayaprakasha GK, Jena BS, Negi PS, et al. Evaluation of antioxidant activities and antimutagenicity of turmeric oil: a byproduct from curcumin production. Zeitsch Naturforsch C. 2002;57(9–10):828–835.
  • Benariba N, Djaziri R, Bellakhdar W, et al. Phytochemical screening and free radical scavenging activity of Citrullus colocynthis seeds extracts. Asian Pacific J Tropic Biomed. 2013;3(1):35–40.
  • Huang W-Y, Cai Y-Z, Zhang Y. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutrit Cancer. 2009;62(1):1–20.
  • Kapinova A, Kubatka P, Golubnitschaja O, et al. Dietary phytochemicals in breast cancer research: anticancer effects and potential utility for effective chemoprevention. Environ Health Prev Med. 2018;23(1):1–18.
  • Surh Y-J. Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat Res/Fundament Mol Mech Mutagen. 1999;428(1–2):305–327.
  • Surh Y-J, Lee J-Y, Choi K-J, et al. Effects of selected ginsenosides on phorbol ester-induced expression of cyclooxygenase-2 and activation of NF-κB and ERK1/2 in mouse skin. Ann NY Acad Sci. 2002;973(1):396–401.
  • Block G, Patterson B, Subar A. Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutrit Cancer. 1992;18(1):1–29.
  • Jochems SHJ, Van Osch FHM, Bryan RT, et al. Impact of dietary patterns and the main food groups on mortality and recurrence in cancer survivors: a systematic review of current epidemiological literature. BMJ Open. 2018;8(2):e014530.
  • Tsyrlov IB, Mikhailenko VM, Gelboin HV. Isozyme-and species-specific susceptibility of cDNA-expressed CYP1A P-450s to different flavonoids. Biochim Biophys Acta (BBA) Protein Struct Mol Enzymol. 1994;1205(2):325–335.
  • Quradha MM, Khan R, Rehman M-u, et al. Chemical composition and in vitro anticancer, antimicrobial and antioxidant activities of essential oil and methanol extract from Rumex nervosus. Nat Prod Res. 2019;33(17):2554–2559.
  • Słoczyńska K, Powroźnik B, Pękala E, et al. Antimutagenic compounds and their possible mechanisms of action. J Appl Genet. 2014;55(2):273–285.
  • Teel RW. Ellagic acid binding to DNA as a possible mechanism for its antimutagenic and anticarcinogenic action. Cancer Lett. 1986;30(3):329–336.
  • Ahmed T, N. Setzer W, Fazel Nabavi S, et al. Insights into effects of ellagic acid on the nervous system: a mini review. CPD. 2016;22(10):1350–1360.
  • Miyazawa M, Sakano K, Nakamura S-i, et al. Antimutagenic activity of isoflavone from Pueraria lobata. J Agric Food Chem. 2001;49(1):336–341.
  • Miyazawa M, Hisama M. Antimutagenic activity of phenylpropanoids from clove (Syzygium aromaticum). J Agric Food Chem. 2003;51(22):6413–6422.
  • Ga̧Siorowski K, Szyba K, Brokos B, et al. Antimutagenic activity of anthocyanins isolated from Aronia melanocarpa fruits. Cancer Letters. 1997;119(1):37–46.
  • Lee K-T, Sohn I-C, Park H-J, et al. Essential moiety for antimutagenic and cytotoxic activity of hederagenin monodesmosides and bisdesmosides isolated from the stem bark of Kalopanax pictus. Planta Med. 2000;66(04):329–332.
  • Abdelwahed A, Bouhlel I, Skandrani I, et al. Study of antimutagenic and antioxidant activities of Gallic acid and 1, 2, 3, 4, 6-pentagalloylglucose from Pistacia lentiscus: confirmation by microarray expression profiling. Chem Biol Interact. 2007;165(1):1–13.
  • Saraç N, Şen B. Antioxidant, mutagenic, antimutagenic activities, and phenolic compounds of Liquidambar orientalis Mill. var. orientalis. Ind Crops Prod. 2014;53:60–64.
  • Snijman PW, Swanevelder S, Joubert E, et al. The antimutagenic activity of the major flavonoids of rooibos (Aspalathus linearis): some dose-response effects on mutagen activation-flavonoid interactions. Mutat Res/Genet Toxicol Environ Mutagen. 2007;631(2):111–123.
  • Elias R, Méo MD, Vidal-Ollivier E, et al. Antimutagenic activity of some saponins isolated from Calendula officinalis L., C. arvensis L. and Hedera helix L. Mutagenesis. 1990;5(4):327–332.
  • Verma PK, Raina R, Agarwal S, et al. Phytochemical ingredients and pharmacological potential of Calendula officinalis Linn. PBR. 2018;4(2):1–17.
  • Zahin M, Ahmad I, Aqil F. Antioxidant and antimutagenic activity of Carum copticum fruit extracts. Toxicol in Vitro. 2010;24(4):1243–1249.
  • Martínez CJ, Loarca-Piña G, Ortíz GD. Antimutagenic activity of phenolic compounds, oligosaccharides and quinolizidinic alkaloids from Lupinus campestris seeds. Food Addit Contam. 2003;20(10):940–948.
  • Lim J-C, Park JH, Budesinsky M, et al. Antimutagenic constituents from the thorns of Gleditsia sinensis. Chem Pharm Bull. 2005;53(5):561–564.
  • Wożniak D, E, Lamer‐Zarawska A. Matkowski Antimutagenic and antiradical properties of flavones from the roots of Scutellaria baicalensis Georgi. Nahrung. 2004;48(1):9–12.
  • Križková L, Chovanová Z, Ďuračková Z, et al. Antimutagenic i90n vitro activity of plant polyphenols: Pycnogenol® and Ginkgo biloba extract (EGb 761). Phytother Res. 2008;22(3):384–388.
  • Wozniak D, Janda B, Kapusta I, et al. Antimutagenic and anti-oxidant activities of isoflavonoids from Belamcanda chinensis (L.) DC. Mutat Res/Genet Toxicol Environ Mutagen. 2010;696(2):148–153.
  • Dauer A, Metzner P, Schimmer O. Proanthocyanidins from the bark of Hamamelis virginiana exhibit antimutagenic properties against nitroaromatic compounds. Planta Med. 1998;64(04):324–327.
  • Choi J, Lee H, Park K-Y, et al. In vitro antimutagenic effects of anthraquinone aglycones and naphthopyrone glycosides from Cassia tora. Planta Med. 1997;63(01):11–14.
  • Vuković-Gačić B, Nikčević S, Berić-Bjedov T, et al. Antimutagenic effect of essential oil of sage (Salvia officinalis L.) and its monoterpenes against UV-induced mutations in Escherichia coli and Saccharomyces cerevisiae. Food Chem Toxicol. 2006;44(10):1730–1738.
  • Hayder N, Ben Ammar R, Abdelwahed A, et al. Antibacterial and antimutagenic activitiy of extracts and essential oil from (Tunisian) Pistacia lentiscus. Toxicol Environ Chem. 2005;87(4):567–573.
  • Fragoso V, Nascimento N. C d, Moura DJ, et al. Antioxidant and antimutagenic properties of the monoterpene indole alkaloid psychollatine and the crude foliar extract of Psychotria umbellata Vell. Toxicol in Vitro. 2008;22(3):559–566.
  • Gowri S, Chinnaswamy P. Evaluation of in vitro antimutagenic activity of Caralluma adscendens roxb. in bacterial reverse mutation assay. J Nat Prod Plant Resour. 2011;1(4):27–34.
  • Seidler-Lozykowska K, Baranska M, Baranski R, et al. Raman analysis of caraway (Carum carvi L.) single fruits. Evaluation of essential oil content and its composition. J Agric Food Chem. 2010;58(9):5271–5275.
  • Goyal M, Gupta VK, Singh N. Carum Carvi: an updated review. Ind J Pharmaceut Biol Res. 2018;6(04):14–24.
  • Yu LL, Zhou KK, Parry J. Antioxidant properties of cold-pressed black caraway, carrot, cranberry, and hemp seed oils. Food Chem. 2005;91(4):723–729.
  • Buiatti E, Palli D, Decarli A, et al. A case-control study of gastric cancer and diet in Italy. Int J Cancer. 1989;44(4):611–616.
  • Morrison MEW, Joseph JM, McCann SE, et al. Cruciferous vegetable consumption and stomach cancer: a case-control study. Nutrit Cancer. 2020;72(1):52–10.
  • Higashimoto M, Purintrapiban J, Kataoka K, et al. Mutagenicity and antimutagenicity of extracts of three spices and a medicinal plant in Thailand. Mutat Res Lett. 1993;303(3):135–142.
  • Abbas MM, Kandil YI, Abbas MA. R-(-)-carvone attenuated doxorubicin induced cardiotoxicity in vivo and potentiated its anticancer toxicity in vitro. Balkan Med J. 2019;37(2):98–103.
  • Wattenberg LW. Inhibition of carcinogenesis by minor dietary constituents. Cancer Res. 1992;52(7 Suppl):2085s–22091.
  • Wattenberg LW, Sparnins VL, Barany G. Inhibition of N-nitrosodiethylamine carcinogenesis in mice by naturally occurring organosulfur compounds and monoterpenes. Cancer Res. 1989;49(10):2689–2692.
  • Islam MT. Literature and scientifically carvone is an anticancer agent. Pharmacol Online. 2019;2:24–30.
  • Sharma DR, Kumar S, Kumar V, et al. Comprehensive review on nutraceutical significance of phytochemicals as functional food ingredients for human health management. J Pharmacogn Phytochem. 2019;8(5):385–395.
  • Mazaki M, Kataoka K, Kinouchi T, et al. Inhibitory effects of caraway (Carum carvi L.) and its component on N-methyl-N’-nitro-N-nitrosoguanidine-induced mutagenicity. J Med Invest. 2006;53(1,2):123–133.
  • Naderi-Kalali B, Allameh A, Rasaee MJ, et al. Suppressive effects of caraway (Carum carvi) extracts on 2, 3, 7, 8-tetrachloro-dibenzo-p-dioxin-dependent gene expression of cytochrome P450 1A1 in the rat H4IIE cells. Toxicol in Vitro. 2005;19(3):373–377.
  • Singh N, Bhalla M, De Jager P, et al. An overview on ashwagandha: a rasayana (rejuvenator) of ayurveda. Afr J Trad Compl Alt Med. 2011;8(5 Suppl):208–213.
  • Achar GPK, et al. Scientific validation of the usefulness of Withania somnifera Dunal in the prevention and treatment of cancer. In: Aktar M, Swamy M, editor. Anticancer plants: properties and application. Singapore: Springer;2018. p. 285–301.
  • Rai M, Jogee PS, Agarkar G, et al. Anticancer activities of Withania somnifera: Current research, formulations, and future perspectives. Pharm Biol. 2016;54(2):189–197.
  • Mayola E, Gallerne C, Esposti DD, et al. Withaferin-A induces apoptosis in human melanoma cells through generation of reactive oxygen species and down-regulation of Bcl-2. Apoptosis. 2011;16(10):1014–1027.
  • Berghe WV, et al. Molecular insight in the multifunctional activities of Withaferin-A. Biochem Pharmacol. 2012;84(10):1282–1291.
  • Cui Z-G, Piao J-L, Rehman MUR, et al. Molecular mechanisms of hyperthermia-induced apoptosis enhanced by withaferin-A. Eur J Pharmacol. 2014;723:99–107.
  • Devi PU. Withania somnifera Dunal (Ashwagandha): potential plant source of a promising drug for cancer chemotherapy and radiosensitization. Ind J Experiment Biol. 1996;34(10):927–932.
  • Fong MY, Jin S, Rane M, et al. Withaferin-A synergizes the therapeutic effect of doxorubicin through ROS-mediated autophagy in ovarian cancer. PloS One. 2012;7(7):e42265. doi: 10.1371/journal.pone.0042265.
  • Khanam S, Devi K. Antimutagenic activity of ashwagandha. J Natural Remed. 2005;5(2):126–131.
  • Choi H-J, et al. Antioxidantive, phospholipase A2 inhibiting, and anticancer effect of polyphenol rich fractions from Panax ginseng CA Meyer. Appl Biol Chem. 2003;46(3):251–256.
  • Shin B-K, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res. 2015;39(4):287–298.
  • Clark AM. Natural products as a resource for new drugs. Pharm Res. 1996;13(8):1133–1141.
  • Kim J-H. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. J Ginseng Res. 2018;42(3):264–269.
  • Li J, Yu H, Wang S, et al. Natural products, an important resource for discovery of multitarget drugs and functional food for regulation of hepatic glucose metabolism. DDDT. 2018;12:121–135.
  • Rhee Y, Ahn J, Choe J, et al. Inhibition of mutagenesis and transformation by root extracts of Panax ginseng in vitro. Planta Med. 1991;57(02):125–128.
  • Raghavendran HRB, Sathyanath R, Shin J, et al. Panax ginseng modulates cytokines in bone marrow toxicity and myelopoiesis: ginsenoside Rg1 partially supports myelopoiesis. PloS One. 2012;7(4):e33733.
  • Wang ZY, Agarwal R, Zhou ZC, et al. Inhibition of mutagenicity in Salmonella typhimurium and skin tumor initiating and tumor promoting activities in SENCAR mice by glycyrrhetinic acid: comparison of 18α-and 18β-stereoisomers. Carcinogenesis. 1991;12(2):187–192.
  • Abdel-Wahhab MA, Ahmed HH. Protective effect of Korean Panax ginseng against chromium VI toxicity and free radicals generation in rats. J Ginseng Res. 2004;28(1):11–17.
  • Metwaly AM, Lianlian Z, Luqi H, et al. Black ginseng and its saponins: preparation, phytochemistry and pharmacological effects. Molecules. 2019;24(10):1856.
  • Mochizuki M, Yoo Y, Matsuzawa K, et al. Inhibitory effect of tumor metastasis in mice by saponins, ginsenoside-Rb2, 20 (R)-and 20 (S)-ginsenoside-Rg3, of red ginseng. Biol Pharm Bull. 1995;18(9):1197–1202.
  • Yang H, Oh K-H, Kim HJ, et al. Ginsenoside-Rb2 and 20 (S)-ginsenoside-Rg3 from Korean red ginseng prevent rotavirus infection in newborn mice. J Microbiol Biotechnol. 2018;28(3):391–396.
  • Kubo M, Chun-Ning T, Matsuda H. Influence of the 70% methanolic extract from red ginseng on the lysosome of tumor cells and on the cytocidal effect of mitomycin c1. Planta Med. 1992;58(5):424–428.
  • Luo S, Yang M, Lv D, et al. TMEPAI increases lysosome stability and promotes autophagy. Int J Biochem Cell Biol. 2016;76:98–106.
  • Panwar M, Kumar M, Samarth R, et al. Evaluation of chemopreventive action and antimutagenic effect of the standardized Panax ginseng extract, EFLA400, in Swiss albino mice. Phytother Res. 2005;19(1):65–71.
  • Yun T-K. Panax ginseng: a non-organ-specific cancer preventive? Lancet Oncol. 2001;2(1):49–55.
  • Yun T-K. and Epidemiological evidence of the cancer-preventive effects of Panax ginseng C. a. Meyer. Nutrition Reviews. 2009;54(11):S71–S81.
  • Kim SI, Park JH, Ryu J-H, et al. Ginsenoside Rg 5, a genuine dammarane glycoside from Korean red ginseng. Arch Pharm Res. 1996;19(6):551–553.
  • Kumar A. Immunomodulatory response induced by ginseng. J Ginseng Res. 2003;27(3):115–119.
  • Wakabayashi C, et al. In vivo antimetastatic action of ginseng protopanaxadiol saponins is based on their intestinal bacterial metabolites after oral administration. Oncol Res Featur Preclin Clin Cancer Therap. 1997;9(8):411–417.
  • Kim EH, Kim W. An insight into ginsenoside metabolite compound K as a potential tool for skin disorder. Evid-Based Complement Alternat Med. 2018;2018:1–8..
  • Anwar F, Abbas A, Mehmood T, et al. Mentha: a genus rich in vital nutra-pharmaceuticals: a review. Phytother Res. 2019;33(10):2548–2570.
  • Buleandra M, Oprea E, Popa DE, et al. Comparative chemical analysis of Mentha piperita and M. spicata and a fast assessment of commercial peppermint teas. Nat Prod Commun. 2016;11(4):1934578X1601100.
  • Aggarwal KK, Khanuja SPS, Ahmad A, et al. Antimicrobial activity profiles of the two enantiomers of limonene and carvone isolated from the oils of Mentha spicata and Anethum sowa. Flavour Fragr J. 2002;17(1):59–63.
  • Kanatt SR, Chander R, Sharma A. Antioxidant potential of mint (Mentha spicata L.) in radiation-processed lamb meat. Food Chem. 2007;100(2):451–458.
  • Yu TW, Xu M, Dashwood RH. Antimutagenic activity of spearmint. Environ Mol Mutagen. 2004;44(5):387–393.
  • Morita K, Hara M, Kada T. Studies on natural desmutagens: screening for vegetable and fruit factors active in inactivation of mutagenic pyrolysis products from amino acids. Agric Biol Chem. 1978;42(6):1235–1238.
  • Natake M, Kanazawa K, Mizuno M, et al. Herb water-extracts markedly suppress the mutagenicity of Trp-P-2. Agric Biol Chem. 1989;53(5):1423–1425.
  • Samman MA. Mint prevents shamma-induced carcinogenesis in hamster cheek pouch. Carcinogenesis. 1998;19(10):1795–1801.
  • Kanazawa K. Research and development for bioavailable functional foods in food science. FSTR. 2018;24(2):183–191.
  • Eren Y. Mutagenic and cytotoxic activities of Limonium globuliferum methanol extracts. Cytotechnology. 2016;68(5):2115–2124.
  • Satomi Y, Miyamoto S, Gould MN. Induction of AP-1 activity by perillyl alcohol in breast cancer cells. Carcinogenesis. 1999;20(10):1957–1961.
  • Dashwood RH. Modulation of heterocyclic amine-induced mutagenicity and carcinogenicity: an ‘A-to-Z’guide to chemopreventive agents, promoters, and transgenic models. Mutat Res/Rev Mutat Res. 2002;511(2):89–112.
  • Ayati Z, Ramezani M, Amiri MS, et al. Ethnobotany, phytochemistry and traditional uses of Curcuma spp. and pharmacological profile of two important species (C. longa and C. zedoaria): a review. CPD. 2019;25(8):871–935.
  • de Fátima Navarro D, de Souza MM, Neto RA, et al. Phytochemical analysis and analgesic properties of Curcuma zedoaria grown in Brazil. Phytomedicine. 2002;9(5):427–432.
  • Kim KI, et al. Antitumor, genotoxicity and anticlastogenic activities of polysaccharide from Curcuma zedoaria. Mol Cells. 2000;10(4):392–398.
  • van den Berghe PVE, Stapelbroek JM, Krieger E, et al. Reduced expression of ATP7B affected by Wilson disease–causing mutations is rescued by pharmacological folding chaperones 4‐phenylbutyrate and curcumin. Hepatology. 2009;50(6):1783–1795.
  • Lim TK. Edible medicinal and non-medicinal plants. Vol. 1. Cham: Springer; 2012.
  • Peng C-H, Chiu W-T, Juan C-W, et al. Pivotal role of curcuminoids on the antimutagenic activity of Curcuma zedoaria extracts. Drug Chem Toxicol. 2010;33(1):64–76.
  • Al-Marzoqi AH, Hadi MY, Hameed IH. Determination of metabolites products by Cassia angustifolia and evaluate antimicrobial activity. J Pharmacogn Phytother. 2016;8(2):25–48.
  • Müller B, Kraus J, Franz G. Chemical structure and biological activity of water-soluble polysaccharides from Cassia angustifolia leaves. Planta Med. 1989;55(6):536–539.
  • Zhao Y, Zhao K, Jiang K, et al. A review of flavonoids from cassia species and their biological activity. CPB. 2016;17(13):1134–1146.
  • Raimondi F, et al. Reactive nitrogen species modulate the effects of rhein, an active component of senna laxatives, on human epithelium in vitro. J Pediatr Gastroenterol Nutrit. 2002;34(5):529–534.
  • Mukhopadhyay MJ, Saha A, Dutta A, et al. Genotoxicity of sennosides on the bone marrow cells of mice. Food Chem Toxicol. 1998;36(11):937–940.
  • Silva CR, Monteiro MR, Rocha HM, et al. Assessment of antimutagenic and genotoxic potential of senna (Cassia angustifolia Vahl.) aqueous extract using in vitro assays. Toxicol in Vitro. 2008;22(1):212–218.
  • Asaolu M, Oyeyemi O, Olanlokun J. Chemical compositions, phytochemical constituents and in vitro biological activity of various extracts of Cymbopogon citratus. Pakistan J Nutrit. 2009;8(12):1920–1922.
  • Thangam R, Sathuvan M, Poongodi A, et al. Activation of intrinsic apoptotic signaling pathway in cancer cells by Cymbopogon citratus polysaccharide fractions. Carbohydr Polym. 2014;107:138–150.
  • Manvitha K, Bidya B. Review on pharmacological activity of Cymbopogon citratus. Int J Herb Med. 2014;6:7.
  • Vinitketkumnuen U, et al. Antimutagenicity of lemon grass (Cymbopogon citratus Stapf) to various known mutagens in salmonella mutation assay. Mutat Res/Genet Toxicol. 1994;341(1):71–75.
  • Odake K, Terahara N, Saito N, et al. Chemical structures of two anthocyanins from purple sweet potato, Ipomoea batatas. Phytochemistry. 1992;31(6):2127–2130.
  • Gras CC, Nemetz N, Carle R, et al. Anthocyanins from purple sweet potato (Ipomoea batatas (L.) Lam.) and their color modulation by the addition of phenolic acids and food-grade phenolic plant extracts. Food Chem. 2017;235:265–274.
  • Yoshimoto M, Yahara S, Okuno S, et al. Antimutagenicity of mono-, di-, and tri-caffeoylquinic acid derivatives isolated from sweetpotato (Ipomoea batatas L.) leaf. Biosci Biotechnol Biochem. 2002;66(11):2336–2341.
  • Saigusa N, Terahara N, Ohba R. Evaluation of DPPH-radical-scavenging activity and antimutagenicity and analysis of anthocyanins in an alcoholic fermented beverage produced from cooked or raw purple-fleshed sweet potato (Ipomoea batatas cv. Ayamurasaki) roots. FSTR. 2005;11(4):390–394.
  • Yoshimoto M, Okuno S, Yoshinaga M, et al. Antimutagenicity of sweetpotato (Ipomoea batatas) roots. Biosci Biotechnol Biochem. 1999;63(3):537–541.
  • Varsha S, Agrawal R, Sonam P. Phytochemical screening and determination of anti-bacterial and anti-oxidant potential of Glycyrrhiza glabra root extracts. J Environ Res Develop. 2013;7(4A):1552.
  • Dhingra D, Parle M, Kulkarni S. Memory enhancing activity of Glycyrrhiza glabra in mice. J Ethnopharmacol. 2004;91(2–3):361–365.
  • Jo E, Kim S, Ra J, et al. Chemopreventive properties of the ethanol extract of Chinese licorice (Glycyrrhiza uralensis) root: induction of apoptosis and G1 cell cycle arrest in MCF-7 human breast cancer cells. Cancer Lett. 2005;230(2):239–247.
  • Khattak KF, Simpson TJ. Effect of gamma irradiation on the antimicrobial and free radical scavenging activities of Glycyrrhiza glabra root. Radiat Phys Chem. 2010;79(4):507–512.
  • Zani F, Cuzzoni M, Daglia M, et al. Inhibition of mutagenicity in Salmonella typhimurium by glycyrrhiza glabra extract, glycyrrhizinic acid and 18α-and 18β-glycyrrhetinic acids. Planta Med. 1993;59(06):502–507.
  • Mitscher LA, Telikepalli H, McGhee E, et al. Natural antimutagenic agents. Mutat Res/Fundament Mol Mech Mutagen. 1996;350(1):143–152.
  • Khan MS, Ahmad I. Diversity of antimutagenic phytocompounds from Indian medicinal plants. In: Herbal medicine in India. Singapore: Springer; 2020. p. 401–412.
  • Kaur S, Kaur P, Sharma N, et al. Modulation of genotoxicity of oxidative mutagens by glycyrrhizic acid from Glycyrrhiza glabra L. Phcogn Res. 2012;4(4):189.
  • Karahan F, Avsar C, Ozyigit II, et al. Antimicrobial and antioxidant activities of medicinal plant Glycyrrhiza glabra var. glandulifera from different habitats. Biotechnol Biotechnol Equip. 2016;30(4):797–804.
  • Heydari M, Homayouni K, Hashempur MH, et al. Topical Citrullus colocynthis (bitter apple) extract oil in painful diabetic neuropathy: a double-blind randomized placebo-controlled clinical trial [外用西瓜属药西瓜瓤 (苦苹果) 提取油治疗痛性糖尿病神经病变: 项双盲随机安慰剂对照的临床试验]. J Diabetes. 2016;8(2):246–252.
  • Tannin-Spitz T, Grossman S, Dovrat S, et al. Growth inhibitory activity of cucurbitacin glucosides isolated from Citrullus colocynthis on human breast cancer cells. Biochem Pharmacol. 2007;73(1):56–67.
  • Abbas AH, Obaid HH, Sagban LH, et al. Mutagenic and anti-mutagenic effect of alcoholic extract of Citrullius colocynthis seeds using bacterial system (G-system). J Kerbala Univ. 2012;10(4):229–236.
  • Shokrzadeh M, Chabra A, Naghshvar F, et al. The mitigating effect of Citrullus colocynthis (L.) fruit extract against genotoxicity induced by cyclophosphamide in mice bone marrow cells. Scientific World J. 2013;2013:1–8.
  • Conforti F, Statti GA, Menichini F. and biological variability of hot pepper fruits (Capsicum annuum var. acuminatum L.) in relation to maturity stage. Food Chem. 2007;102(4):1096–1104.
  • Sim K-H, Han Y-S. The antimutagenic and antioxidant effects of red pepper seed and red pepper pericarp (Capsicum annuum L.). JFN. 2007;12(4):273–278.
  • Mori A, Lehmann S, O’Kelly J, et al. Capsaicin, a component of red peppers, inhibits the growth of androgen-independent, p53 mutant prostate cancer cells. Cancer Res. 2006;66(6):3222–3229.
  • Thoennissen NH, O’Kelly J, Lu D, et al. Capsaicin causes cell-cycle arrest and apoptosis in ER-positive and-negative breast cancer cells by modulating the EGFR/HER-2 pathway. Oncogene. 2010;29(2):285–296.
  • Lynch M, Ackerman MS, Gout J-F, et al. Genetic drift, selection and the evolution of the mutation rate. Nat Rev Genet. 2016;17(11):704–714.
  • Gomase V, Sherkhane A. Isolation, structure elucidation and biotransformation studies on secondary metabolites from Asparagus racemosus. Int J Micr Res. 2010;2(1):7–9.
  • Dartsch PC. The potential of asparagus‐P® to inactivate reactive oxygen radicals. Phytother Res. 2008;22(2):217–222.
  • Singla R, et al. In-vitro antimutagenic activity of Asparagus racemosus: an ayurvedic medicinal plant. Am J Drug Discovery Dev. 2013;3(4):1–7.