773
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A numerical study of the sensitivity of ethanol flux to the existence of co-factors in the Central metabolism of a yeast cell using multi-substrate enzymes kinetic modelling

, &
Pages 375-383 | Received 16 Dec 2019, Accepted 16 Apr 2020, Published online: 30 Apr 2020

References

  • Chemier JA, Fowler ZL, Koffas MA, et al. Trends in microbial synthesis of natural products and biofuels. Adv Enzymol Relat Areas Mol Biol. 2009;76:151–217.
  • Hanly TJ, Henson MA. Dynamic metabolic modeling of a microaerobic yeast co-culture: predicting and optimizing ethanol production from glucose/xylose mixtures. Biotechnol Biofuels. 2013;6(1):44–2019.
  • Yuan S, Alper HS. Metabolic engineering of microbial cell factories for production of nutraceuticals. Microb Cell Fact. 2019; 18(1):46.
  • Marella ER, Holkenbrink C, Siewers V, et al. Engineering microbial fatty acid metabolism for biofuels and biochemicals. Curr Opin Biotechnol. 2018;50:39–46.
  • Li M, Schneider K, Kristensen M, et al. Engineering yeast for high-level production of stilbenoid antioxidants. Sci Rep. 2016;6(1):36827.
  • Ma T, Shi B, Ye Z, et al. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metab Eng. 2019;52:134–142.
  • Lian J, Mishra S, Zhao H. Recent advances in metabolic engineering of Saccharomyces cerevisiae: new tools and their applications. Metab Eng. 2018;50:85–108.
  • Li M, Kildegaard KR, Chen Y, et al. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metab Eng. 2015;32:1–11.
  • Selim KA, El-Ghwas DE, Easa SM, et al. Bioethanol a Microbial Biofuel Metabolite. New Insights of Yeasts Metabolic Engineering. Fermentation. 2018; 4(1):16.
  • Naghshbandi MP, Tabatabaei M, Aghbashlo M, et al. Progress toward improving ethanol production through decreased glycerol generation in Saccharomyces cerevisiae by metabolic and genetic engineering approaches. Renew. Sust. Energ. 2019;115:109353.
  • Ji R-Y, Ding Y, Shi T-Q, et al. Metabolic engineering of yeast for the production of 3-hydroxypropionic acid. Front Microbiol. 2018;9:2185
  • Song X, Li Y, Wu Y, et al. Metabolic engineering strategies for improvement of ethanol production in cellulolytic Saccharomyces cerevisiae. FEMS Yeast Res. 2018; 18(8):foy090.
  • Na D, Kim TY, Lee SY. Construction and optimization of synthetic pathways in metabolic engineering. Curr Opin Microbiol. 2010;13(3):363–370.
  • Kondo A, Ishii J, Hara KY, et al. Development of microbial cell factories for biorefinery through synthetic bioengineering. J Biotechnol. 2013;163(2):204–216.
  • Hollinshead W, He L, Tang YJ. Biofuel production: an odyssey from metabolic engineering to fermentation scale-up. Front Microbiol. 2014;5(344). doi:10.3389/fmicb.2014.00344. [cited 18 Dec. 2019].
  • Cameron DC, Chaplen FW. Developments in metabolic engineering. Curr Opin Biotechnol. 1997;8(2):175–180.
  • Nielsen J. Cellular and metabolic engineering. Biotechnol Bioeng. 1998;58(2-3):125–132.
  • Stephanopoulos G. Metabolic fluxes and metabolic engineering. Metab Eng. 1999;1(1):1–11.
  • Stephanopoulos G, Sinskey AJ. Metabolic engineering methodologies and future prospects. Trends Biotechnol. 1993;11(9):392–396.
  • Kern A, Tilley E, Hunter IS, et al. Engineering primary metabolic pathways of industrial micro-organisms. J Biotechnol. 2007;129(1):6–29.
  • Schomburg I, Schomburg CA, Brenda D. enzyme data and metabolic information. Nucleic Acids Res. 2002;30(1):47–49.
  • Cameron DC, Tong IT. Metabolic engineering: techniques for analysis of targets for genetic manipulations. An overview. Appl Biochem Biotechnol. 1993;38(1-2):105–140.
  • Lei F, Rotboll M, Jorgensen SB. A biochemically structured model for Saccaromyces cerevisiae. Biotechnol. 2001;88(3):205–221.
  • Kasbawati, Samsir R, Sulfahri, et al. Determining an appropriate unstructured kinetic model for batch ethanol fermentation data using a direct search method. Biotechnol Biotechnol Equip. 2018;32(5):1167–1173.
  • Souza ACM, Mousaviraad M, Mapoka KOM, et al. Kinetic modeling of corn fermentation with S. cerevisiae using a variable temperature strategy. Bioengineering (Basel. 2018;5(2):16–34.
  • Kasbawati, Kalondeng A, Aris N, et al. A kinetic modelling of enzyme inhibitions in the central metabolism of yeast cells. J. Phys. Conf. 2018;979:012066. [cited 16 Dec. 2019]
  • Postma E, Verduyn C, Scheffers WA, et al. Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 1989;55(2):468–477.
  • Pronk JT, Steensma HY, Van Dijken JP. Pyruvat metabolism in Saccharomyces cerevisiae. Yeast. 1996;12(16):1607–1633.
  • Rizzi M, Theobald U, Querfurth E, et al. In vivo investigations of glucose transport in Saccharomyces cerevisiae. Biotechnol Bioeng. 2000;49(3):316–327.
  • Kasbawati, Gunawan AY, Hertadi R, et al. Metabolic regulation and maximal reaction optimization in the central metabolism of a yeast cell. AIP Conf Proc. 2015;1651:75–85.
  • Kasbawati, Gunawan AY, Sidarto KA, et al. A new strategy of glucose supply in a microbial fermentation model. AIP Conf. Proc. 2015;1677(1):030015.
  • Kasbawati, Gunawan AY, Sidarto KA. Washout and non-washout solutions of a system describing microbial fermentation process under the influence of growth inhibitions and maximal concentration of yeast cells. Math Biosci. 2017;289:40–50.
  • Du Preez FB, van Niekerk DD, Kooi B, et al. From steady-state to synchronized yeast glycolytic oscillations i: model construction. FEBS Journal. 2012;279(16):2810–2822.
  • Teusink B, Passarge J, Reijenga CA, et al. Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? testing biochemistry. Eur J Biochem. 2000;267(17):5313–5329.
  • Smits HP, Smits GJ, Postma PW, et al. High-affinity glucose uptake in Saccharomyces cerevisiae isnot dependent on the presence of glucose-phosphorylating enzymes. Yeast. 1996;12(5):439–447.
  • Kotyk A. Mobility of the free and of the loadedmonosaccharide carrier in Saccharomyces cerevisiae. BBA-Gen Subjects. 1967;135(1):112–119.
  • Lang JM, Cirillo P. Glucose transport in a kinaselessSaccharamyces cerevisiae mutant. J. Bacteriol. 1987;169(7):2932–2937.
  • Kasbawati A, Kalondeng A, et al. Mathematical study of feedback inhibition effects on the dynamics of metabolites on the central metabolism of a yeast cell: a combination of kinetic model and metabolic control analysis. Biotechnol Biotechnol Equip. 2019;33(1):1126–1137.
  • Fuhrmann GF, Völker B, Sander S, et al. Kineticanalysis and simulation of glucose transport in plasma membranevesicles of glucose-repressed and derepressed Saccharomycescerevisiae cells. Experientia. 1989;45(11-12):1018–1023.
  • Ganzhorn AJ, Green DW, Hershey AD, et al. Kinetic characterization of yeast alcohol dehydrogenases. J. Biol. Chem. 1987;262(8):3754–3761.