914
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Recombinant expression of Thermosynechococcus elongatus BP-1 glutathione S-transferase in Arabidopsis thaliana: an efficient tool for phytoremediation of thiocyanate

, , , , , & show all
Pages 494-505 | Received 14 Jan 2020, Accepted 02 Jun 2020, Published online: 17 Jun 2020

References

  • Beekhuis HA. Technology and industrial application. In: Newman AA, editors. Chemistry and biochemistry of thiocyanic acid and its derivatives. London: Academic Press; 1975. p. 222–255.
  • Hussain A, Ogawa T, Saito M, et al. Cloning and expression of a gene encoding a novel thermostable thiocyanate-degrading enzyme from a mesophilic Alphaproteobacteria strain THI201. Microbiology (Reading Engl). 2013;159(Pt 11):2294–2302.
  • Boucabeille C, Bories A, Ollivier P, et al. Microbial degradation of metal complexed cyanides and thiocyanate from mining wastewaters. Environ Pollut. 1994;84(1):59–67.
  • Watts MP, Gan HM, Peng LY, et al. In situ stimulation of thiocyanate biodegradation through phosphate amendment in gold mine tailings water. Environ Sci Technol. 2017;51(22):13353–13362.
  • Patil Yogesh B. Utilization of thiocyanate (SCN−) by a metabolically active bacterial consortium as the sole source of nitrogen. Int J Chem Environ Pharm Res. 2011;2:44–48.
  • Trapp S, Karlson U. Aspects of phytoremediation of organic pollutants. J Soils Sediments. 2001;1(1):37–43.
  • Katayama Y, Hashimoto K, Nakayama H, et al. Thiocyanate hydrolase is a cobalt-containing metalloenzyme with a cysteine-sulfinic acid ligand . J Am Chem Soc. 2006;128(3):728–729.
  • Johnson CA, Grimes DJ, Leinz RW, et al. Cyanide speciation at four gold leach operations undergoing remediation. Environ Sci Technol. 2008;42(4):1038–1044.
  • Boening DW, Chew CM. A critical review: general toxicity and environmental fate of three aqueous cyanide ions and associated ligands. Water Air Soil Pollut. 1999;109(1/4):67–79.
  • Andersson AC, Strömvall AM. Leaching of concrete admixtures containing thiocyanate and resin acids. Environ Sci Technol. 2001;35(4):788–793.
  • Wood AP, Kelly DP, McDonald IR, et al. A novel pink-pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources. Arch Microbiol. 1998;169(2):148–158.
  • Bhunia F, Saha NC, Kaviraj A. Toxicity of thiocyanate to fish, plankton, worm, and aquatic ecosystem. Bull Environ Contam Toxicol. 2000;64(2):197–204.
  • Lee C, Kim J, Do H, et al. Monitoring thiocyanate-degrading microbial community in relation to changes in process performance in mixed culture systems near washout. Water Res. 2008;42(4-5):1254–1262.
  • Lee C, Scott JS. State of the art processes for the treatment of gold mill effluents; industrial programs branch. Ottawa (Canada): Environment Canada; 1987.
  • Kevan SD, Dixon DG. The acute toxicity of pulse-dosed thiocyanate (as KSCN and NaSCN) to rainbow trout (Oncorhyn-chus mykiss) eggs before and after water hardening. Aquat Toxicol. 1991;19(2):113–122.
  • Akcil A. Destruction of cyanide in gold mill effluents: biological versus chemical treatments. Biotechnol Adv. 2003;21(6):501–511.
  • Gould WD, King M, Mohapatra BR, et al. A critical review on destruction of thiocyanate in mining effluents. Miner Eng. 2012;34:38–47.
  • Ahn JH, Kim J, Lim J, et al. Biokinetic evaluation and modeling of continuous thiocyanate biodegradation by Klebsiella sp. Biotechnol Prog. 2004;20(4):1069–1075.
  • Ebbs S. Biological degradation of cyanide compounds. Curr Opin Biotechnol. 2004;15(3):231–236.
  • Bezsudnova EY, Sorokin DY, Tikhonova TV, et al. Thiocyanate hydrolase, the primary enzyme initiating thiocyanate degradation in the novel obligately chemolithoautotrophic halophilic sulfur-oxidizing bacterium Thiohalophilus thiocyanoxidans. Biochim Biophys Acta. 2007;1774(12):1563–1570.
  • McCutcheon SC, Schnoor JL. Phytoremediation: transformation and control of contaminants. Environ Sci Pollut Res. 2004;11(1):40–40.
  • Doty SL. Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol. 2008;179(2):318–333.
  • Ruiz ON, Alvarez D, Torres C, et al. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability. Plant Biotechnol J. 2011;9(5):609–617.
  • Weisman D, Alkio M, Colón-Carmona A. Transcriptional responses to polycyclic aromatic hydrocarbon-induced stress in Arabidopsis thaliana reveal the involvement of hormone and defense signaling pathways. BMC Plant Biol. 2010;10:59–13.
  • Burritt DJ. The polycyclic aromatic hydrocarbon phenanthrene causes oxidative stress and alters polyamine metabolism in the aquatic liverwort Riccia fluitans L. Plant Cell Environ. 2008;31(10):1416–1431.
  • Doty SL, Shang TQ, Wilson AM, et al. Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P450 2E1. Proc Natl Acad Sci Usa. 2000;97(12):6287–6291.
  • Rugh CL, Senecoff JF, Meagher RB, et al. Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol. 1998;16(10):925–928.
  • Sheehan D, Meade G, Foley VM, et al. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J. 2001;360(Pt 1):1–16.,
  • Palanisami S, Prabaharan D, Uma L. Fate of few pesticide-metabolizing enzymes in the marine cyanobacterium Phormidium valderianum BDU 20041 in perspective with chlorpyrifos exposure. Pestic Biochem Physiol. 2009;94(2-3):68–72.
  • Ranson H, Hemingway J. Mosquito glutathione transferases. Meth Enzymol. 2005;401:226–241.
  • Zechmann B, Tomašić A, Horvat L, et al. Subcellular distribution of glutathione and cysteine in cyanobacteria. Protoplasma. 2010;246(1-4):65–72.
  • Landen RH. The effect of certain chemicals on the catalase activity in plants. Am J Bot. 1984;21:583–591.
  • Karavangeli M, Labrou NE, Clonis YD, et al. Development of transgenic tobacco plants overexpressing maize glutathione S-transferase I for chloroacetanilide herbicides phytoremediation. Biomol Eng. 2005;22(4):121–128.
  • Flocco CG, Lindblom SD, Elizabeth AH, et al. Overexpression of enzymes involved in glutathione synthesis enhances tolerance to organic pollutants in Brassica juncea. Int J Phytoremediation. 2004;6(4):289–304.,
  • Zhang YY, Liu JH. Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants. J Hazard Mater. 2011;189(1-2):357–362.
  • Sami N, Fatma T. Studies on estrone biodegradation potential of cyanobacterial species. Biocatal Agric Biotechnol. 2019;17:576–582.
  • Zou JJ, Liu W, Deng WQ, et al. An efficient guanidinium isothiocyanate additive for improving the photovoltaic performances and thermal stability of perovskite solar cells. Electrochim Acta. 2018;291(20):297–303.
  • Xiong AS, Yao QH, Peng RH, et al. A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences. Nucleic Acids Res. 2004;32(12):e98–10.
  • Zhang X, Henriques R, Lin SS, et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc. 2006;1(2):641–646.
  • Liao Y, Zhou X, Yu J, et al. The key role of chlorocatechol 1,2-dioxygenase in phytoremoval and degradation of catechol by transgenic Arabidopsis . Plant Physiol. 2006;142(2):620–628.
  • Bradford MA. Rapid and sensitive method for the detection of microgram quantities of proteins. Anal Biochem. 1976;72(1-2):248–254.
  • Hossain MZ, Hossain MD, Fujita M. Induction of pumpkin glutathione S-transferase by different stresses and its possible mechanisms. Biol Plant. 2006;50(2):210–218.
  • Li X, Zhang X, Zhang J, et al. Identification and characterization of eleven glutathione S-transferase genes from the aquatic midge Chironomus tentans (Diptera: Chironomidae)). Insect Biochem Mol Biol. 2009;39(10):745–754.
  • Ibraheem I. Biodegradability of hydrocarbons by cyanobacteria. Journal of Phycology. 2010;46(4):818–824.
  • Nahar N, Rahman A, Nawani NN, et al. Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana. J Plant Physiol. 2017;218:121–126.
  • Halweg C, Thompson WF, Spiker S. The rb7 matrix attachment region increases the likelihood and magnitude of transgene expression in tobacco cells: a flow cytometric study. Plant Cell. 2005;17(2):418–429.
  • Ingham DJ, Beer S, Money S, et al. Quantitative real-time PCR assay for determining transgene copy number in transformed plants. BioTechniques. 2001;31(1):132–140.
  • Srivastava D, Verma G, Chauhan AS, et al. Rice (Oryza sativa L.) tau class glutathione S-transferase (OsGSTU30) overexpression in Arabidopsis thaliana modulates a regulatory network leading to heavy metal and drought stress tolerance. Metallomics. 2019;11(2):375–389.
  • Dixit P, Mukherjee PK, Sherkhane PD, et al. Enhanced tolerance and remediation of anthracene by transgenic tobacco plants expressing a fungal glutathione transferase gene. J Hazard Mater. 2011;192(1):270–276.
  • Hayes JD, Wolf CR. Role of glutathione transferase in drug resistance. In: Sies H, Ketterer B, editors. Glutathione Conjugation: Mechanisms and Biological Significance. Cambridge (MA): Academic Press; 1988. p. 315–355.
  • Mannervik B, Danielson UH. Glutathione transferases-structure and catalytic activity. CRC Crit Rev Biochem. 1988;23(3):283–337.
  • Pickett CB, Lu AY. Glutathione S-transferases: gene structure, regulation, and biological function. Annu Rev Biochem. 1989;58:743–764.
  • Yang Y, Cheng JZ, Singhal SS, et al. Role of glutathione S-transferases in protection against lipid peroxidation. Overexpression of hGSTA2-2 in K562 cells protects against hydrogen peroxide-induced apoptosis and inhibits JNK and caspase 3 activationJ Biol Chem. 2001;276(22):19220–19230.
  • C-MA, Penilla RP, Rodríguez DA. Insecticide resistance and glutathione S-transferases in mosquitoes: A review. Afr J Biotechnol. 2009;8(8):1386–1397.
  • Kayihan DS, Kayihan C, Ciftci YO. Excess boron responsive regulations of antioxidative mechanism at physio-biochemical and molecular levels in Arabidopsis thaliana. Plant Physiol Biochem. 2016;109:337–345.
  • Kayihan DS, Kayihan C, Ciftci YO. Regulation of boron toxicity responses via glutathione-dependent detoxification pathways at biochemical and molecular levels in Arabidopsis thaliana. Turk J Bot. 2019;43(6):749–757.
  • Yu XZ, Zhang FZ. Effects of exogenous thiocyanate on mineral nutrients, antioxidative responses and free amino acids in rice seedlings. Ecotoxicology. 2013;22(4):752–760.
  • Fenwick GR, Heaney RK, Mullin WJ. Glucosinolates and their breakdown products in food and food plants. Crit Rev Food Sci Nutr. 1983;18(2):123–201.
  • Brown PD, Morra MJ. Hydrolysis products of glucosinolates in Brassica napus tissues as inhibitors of seed germination. Plant Soil. 1996;181(2):307–316.
  • Kawakishi S, Kaneko T. Interaction of oxidized glutathione with allyl isothiocyanate. Phytochemistry. 1985;24(4):715–718.
  • Bittsánszky A, Kömives T, Gullner G, et al. Ability of transgenic poplars with elevated glutathione content to tolerate zinc(2+) stress. Environ Int. 2005;31(2):251–254.
  • Hellou J, Ross NW, Moon TW. Glutathione, glutathione S-transferase, and glutathione conjugates, complementary markers of oxidative stress in aquatic biota. Environ Sci Pollut Res Int. 2012;19(6):2007–2023.
  • Fu ZJ, Tang SF, Hou XM. Probing the molecular toxic mechanism of di-(2-ethylhexyl) phthalate with glutathione transferase Phi8 from Arabidopsis thaliana. Int J Biol Macromol. 2020;145:165–172.
  • Tzafestas K, Ahmad L, Dani MP, et al. Structure-Guided mechanisms behind the metabolism of 2,4,6-trinitrotoluene by glutathione transferases U25 and U24 that lead to alternate product distribution. Front Plant Sci. 2018;9:1846.
  • Urbancsok J, Bones AM, Kissen R. Arabidopsis mutants impaired in glutathione biosynthesis exhibit higher sensitivity towards the glucosinolate hydrolysis product allyl-isothiocyanate. Sci Rep. 2018;8(1):9809.