2,991
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Utilization of marigold (Tagetes erecta) flower fermentation wastewater as a fertilizer and its effect on microbial community structure in maize rhizosphere and non-rhizosphere soil 

, , , , , , , , , & show all
Pages 522-531 | Received 05 Mar 2020, Accepted 08 Jun 2020, Published online: 22 Jun 2020

References

  • Hadden WL, Watkins RH, Levy LW, et al. Carotenoids composition of marigold (Tagetes erecta) flower extract used as nutritional supplement. J Agric Food Chem. 1999;47(10):4189–4194.
  • Samsudin H, Soto-Valdez H, Auras R. Poly(lactic acid) film incorporated with marigold flower extract (Tagetes erecta) intended for fatty-food application. Food Control. 2014;46:55–66.
  • Álvarez MV, Hincapié S, Saavedra N, et al. Exploring feasible sources for lutein production: food by-products and supercritical fluid extraction, a reasonable combination. Phytochem Rev. 2015;14(6):891–897.
  • Liu C, Chang D, Zhang X, et al. Oral fast-dissolving films containing lutein nanocrystals for improved bioavailability: formulation development, in vitro and in vivo evaluation. AAPS PharmSciTech. 2017;18(8):2957–2964.
  • Richard AB. Lutein and zeaxanthin dietary supplements raise macular pigment density and serum concentrations of these carotenoids in humans. J Nutr. 2003;133(4):992–998.
  • Wu X, Zhang H, Wang X, et al. Fermented marigold flowers suitable for the fine screening of lactic acid bacteria strains. Food Sci Tech. 2011;36(2):16–18 (in Chinese).
  • Rong H. Comprehensive treatment to marigold flower fermentative waste. Chem Eng. 2007;140(5):36–38 (in Chinese).
  • Luis NBJ, Hugo JI, Enrique BA, et al. An optimization study of solid-state fermentation: xanthophylls extraction from marigold flowers. Appl Microbiol Biotechnol. 2004;65(4):383–390.
  • Pathomrungsiyounggul P, Grandison AS, Lewis MJ. Effect of calcium carbonate, calcium citrate, tricalcium phosphate, calcium gluconate and calcium lactate on some physicochemical properties of soymilk. Int J Food Sci Tech. 2010;45(11):2234–2240.
  • Hui Q, Yang R, Shen C, et al. Mechanism of calcium lactate facilitating phytic acid degradation in soybean during germination. J Agric Food Chem. 2016;64(27):5564–5573.
  • Hui Q, Wang M, Wang P, et al. Gibberellic acid promoting phytic acid degradation in germinating soybean under calcium lactate  treatment. J Sci Food Agric. 2018;98(2):644–651.
  • Yang F, Zhang F, Sun J, et al. Identification and preliminary application of antagonistic strains against potato fungal diseases. China Vegetables. 2019;369(11):56–62.
  • Rognes T, Flouri T, Nichols B, et al. VSEARCH: a versatile open source tool for metagenomics. Peer J. 2016;4:e2584.
  • Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–336.
  • Yilmaz P, Parfrey LW, Yarza P, et al. The SILVA and ‘All-species Living Tree Project (LTP)’ taxonomic frameworks. Nucleic Acids Res. 2014;42(Database issue):D643–648.
  • Nilsson RH, Larsson KH, Taylor AFS, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47(D1):D259–D264.
  • Wang Q, Garrity GM, Tiedje JM, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261–5267.
  • Xiao K, Yu L, Xu J, et al. pH, nitrogen mineralization, and KCl-extractable aluminum as affected by initial soil pH and rate of vetch residue application: results from a laboratory study. J Soils Sediments. 2014;14(9):1513–1525.
  • Kim JM, Roh AS, Choi SC, et al. Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea. J Microbiol. 2016;54(12):838–845.
  • Pascual JA, Moreno JL, Hernández T, et al. Persistence of immobilised and total urease and phosphatase activities in a soil amended with organic wastes. Bioresource Technol. 2002;82(1):73–78.
  • Hollister EB, Engledow AS, Hammett AJM, et al. Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. ISME J. 2010;4(6):829–838.
  • Yin A, Jia Y, Qiu T, et al. Poly-γ-glutamic acid improves the drought resistance of maize seedlings by adjusting the soil moisture and microbial community structure. Appl Soil Ecol. 2018;129:128–135.
  • Will C, Thurmer A, Wollherr A, et al. Horizon-specific bacterial community composition of german grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes. Appl Environ Microbiol. 2010;76(20):6751–6759.
  • Maike R, Pérez-Jaramillo JE, Kavamura VN, et al. Multitrophic interactions in the rhizosphere microbiome of wheat: from bacteria and fungi to protists. FEMS Microbiol Ecol. 2020;96(4):4.
  • Hernández M, Dumont MG, Yuan Q, et al. Different bacterial populations associated with the roots and rhizosphere of rice incorporate plant-derived carbon. Appl Environ Microbiol. 2015;81(6):2244–2253.
  • Brown CT, Hug LA, Thomas BC, et al. Unusual biology across a group comprising more than 15% of domain bacteria. Nature. 2015;523(7559):208–211.
  • Lemos LN, Medeiros JD, Dini-Andreote F, et al. Genomic signatures and co-occurrence patterns of the ultra-small Saccharimonadia (phylum CPR/Patescibacteria) suggest a symbiotic lifestyle. Mol Ecol. 2019;28(18):4259–4271.
  • Baindara P, Nayudu N, Korpole S. Whole genome mining reveals a diverse repertoire of lanthionine synthetases and lanthipeptides among the genus Paenibacillus. J Appl Microbiol. 2020;128(2):473–490.
  • Trinh CS, Jeong CY, Lee WJ, et al. Paenibacillus pabuli strain P7S promotes plant growth and induces anthocyanin accumulation in Arabidopsis thaliana. Plant Physiol Biochem. 2018;129:264–272.
  • Gutierrez-Manero FJ, Ramos-Solano B, Probanza A, et al. The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant. 2001;111(2):206–211.
  • Chen XH, Koumoutsi A, Scholz R, et al. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol. 2007;25(9):1007–1014.
  • Wu WJ, Park SM, Ahn BY. Isolation and characterization of an antimicrobial substance from Bacillus subtilis BY08 antagonistic to Bacillus cereus and Listeria monocytogenes. Food Sci Biotechnol. 2013;22(2):433–440.
  • Liu H, Yin S, An L, et al. Complete genome sequence of Bacillus subtilis BSD-2, a microbial germicide isolated from cultivated cotton. J Biotechnol. 2016;230:26–27.
  • Liu H, Wang Y, Yang Q, et al. Genomics and LC-MS reveal diverse active secondary metabolites in Bacillus amyloliquefaciens WS-8. J Microbiol Biotechnol. 2020;30(3):417–426.
  • Hossain MM, Sultana F, Kubota M, et al. The plant growth-promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals. Plant Cell Physiol. 2007;48(12):1724–1736.