1,221
Views
8
CrossRef citations to date
0
Altmetric
Research Article

SNP discovery for genetic diversity and population structure analysis coupled with restriction-associated DNA (RAD) sequencing in walnut cultivars of Sichuan Province, China

, , &
Pages 652-664 | Received 04 Mar 2020, Accepted 07 Jul 2020, Published online: 30 Jul 2020

References

  • Bae W, Kim J, Chung J. Production of granular activated carbon from food-processing wastes (walnut shells and jujube seeds) and its adsorptive properties. J Air Waste Manag Assoc. 2014;64(8):879–886.
  • Baghkheirati EK, Bagherieh-Najjar MB. Modelling and optimization of Ag-nanoparticle biosynthesis mediated by walnut green husk extract using response surface methodology. Mater Lett. 2016;171:166–170.
  • Chen L, Ma Q, Chen Y, et al. Identification of major walnut cultivars grown in China based on nut phenotypes and SSR markers. Sci Hortic-Amsterdam. 2014;168:240–248.
  • Ciarmiello LF, Piccirillo P, Pontecorvo G, et al. A PCR based SNPs marker for specific characterization of English walnut (Juglans regia L.) cultivars. Mol Biol Rep. 2011;38(2):1237–1249.
  • Quan S, Qianwen X, Yongfei L, et al. Research on the main economic characters of the giant walnut in Shimian. North Hortic. 2011;18:15–18. (In Chinese)
  • Bayazit S, Kazan K, Gulbitti S, et al. AFLP analysis of genetic diversity in low chill requiring walnut (Juglans regia L.) genotypes from Hatay, Turkey. Sci Hortic-Amsterdam. 2007;111(4):394–398.
  • Pollegioni P, Woeste KE, Chiocchini F, et al. Landscape genetics of Persian walnut (Juglans regia L.) across its Asian range. Tree Genet Genom. 2014;10(4):1027–1043.
  • Gunn BF, Aradhya M, Salick JM, et al. Genetic variation in walnuts (Juglans regia and J. sigillata; Juglandaceae): species distinctions, human impacts, and the conservation of agrobiodiversity in Yunnan, China. Am J Bot. 2010;97(4):660–671.
  • Aradhya MK, Potter D, Gao F, et al. Molecular phylogeny of Juglans (Juglandaceae): a biogeographic perspective. Tree Genet Genom. 2007;3(4):363–378.
  • Marrano A, Martinez-Garcia PJ, Bianco L, et al. A new genomic tool for walnut (Juglans regia L.): development and validation of the high-density Axiom™ J. regia 700K SNP genotyping array. Plant Biotechnol J. 2019;17(6):1027–1036.
  • Sun YW, Hou N, Woeste K, et al. Population genetic structure and adaptive differentiation of iron walnut Juglans regia subsp. sigillata in southwestern China. Ecol Evol. 2019;9(24):14154–14166.
  • Pollegioni P, Woeste KE, Chiocchini F, et al. Ancient humans influenced the current spatial genetic structure of common walnut populations in Asia. PLoS One. 2015;10(8):e0135980.
  • Pecoraro C, Babbucci M, Villamor A, et al. Methodological assessment of 2B-RAD genotyping technique for population structure inferences in yellowfin tuna (Thunnus albacares). Mar Genom. 2016;25:43–48.
  • You FM, Deal KR, Wang J, et al. Genome-wide SNP discovery in walnut with an AGSNP pipeline updated for SNP discovery in allogamous organisms. BMC Genomics. 2012;13(1):354–354.
  • Van Wyngaarden M, Snelgrove PVR, DiBacco C, et al. Identifying patterns of dispersal, connectivity and selection in the sea scallop, Placopecten magellanicus, using RADseq-derived SNPs. Evol Appl. 2017;10(1):102–117.
  • Xu P, Xu S, Wu X, et al. Population genomic analyses from low-coverage RAD-Seq data: a case study on the non-model cucurbit bottle gourd. Plant J. 2014;77(3):430–442.
  • Bruneaux M, Johnston SE, Herczeg G, et al. Molecular evolutionary and population genomic analysis of the nine-spined stickleback using a modified restriction-site-associated DNA tag approach. Mol Ecol. 2013;22(3):565–582.
  • Hohenlohe PA, Bassham S, Etter PD, et al. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet. 2010;6(2):e1000862.
  • Martínez-García PJ, Crepeau MW, Puiu D, et al. The walnut (Juglans regia) genome sequence reveals diversity in genes coding for the biosynthesis of non-structural polyphenols. Plant J. 2016;87(5):507–532.
  • Baird NA, Etter PD, Atwood TS, et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One. 2008;3(10):e3376.
  • Liu C, Chen H, Ren Z, et al. Population genetic analysis of the domestic Bactrian camel in China by RAD-seq. Ecol Evol. 2019;9(19):11232–11242.
  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–359.
  • Catchen J, Bassham S, Wilson T, et al. The population structure and recent colonization history of Oregon threespine stickleback determined using restriction-site associated DNA-sequencing. Mol Ecol. 2013;22(11):2864–2883.
  • Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–1760.
  • Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAM tools. Bioinformatics. 2009;25(16):2078–2079.
  • Liu K, Muse SV. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics. 2005;21(9):2128–2129.
  • Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–2739.
  • Zhang X, Zhang Z, Gu X, et al. Genetic diversity of pepper (capsicum spp.) germplasm resources in China reflects selection for cultivar types and spatial distribution. J Integr Agric. 2016;15(9):1991–2001.
  • Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol. 2005;14(8):2611–2620.
  • Yang J, Lee SH, Goddard ME, et al. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88(1):76–82.
  • Bradbury PJ, Zhang Z, Kroon DE, et al. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23(19):2633–2635.
  • Danecek P, Auton A, Abecasis G, et al. The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156–2158.
  • Lee S, Nguyen TX, Kim J, et al. Cytological variations and long terminal repeat (LTR) retrotransposon diversities among diploids and B-chromosome aneuploids in Lilium amabile Palibin. Genes Genomics. 2019;41(8):941–950.
  • Nei M, Tajima F. Maximum likelihood estimation of the number of nucleotide substitutions from restriction sites data. Genetics. 1983;105(1):207–217.
  • Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123(3):585–595.
  • Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10(3):564–567.
  • Beerli P. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics. 2006;22(3):341–345.
  • Beerli P. Estimation of the population scaled mutation rate from microsatellite data. Genetics. 2007;177(3):1967–1968.
  • Feng JY, Li M, Zhao S, et al. Analysis of evolution and genetic diversity of sweet potato and its related different polyploidy wild species I. trifida using RAD-seq. BMC Plant Biol. 2018;18(1):181.
  • Zhong Y, Yang A, Liu S, et al. RAD-Seq data point to a distinct split in Liriodendron (Magnoliaceae) and obvious east–west genetic divergence in L. chinense. Forests. 2018;10(1):1–13.
  • Wang Y, Li X, Mao Y, et al. Genome-wide dynamic transcriptional profiling in Clostridium beijerinckii NCIMB 8052 using single-nucleotide resolution RNA-Seq. BMC Genomics. 2012;13(1):102–102.
  • Mu XY, Sun M, Yang PF, et al. Unveiling the identity of Wenwan walnuts and phylogenetic relationships of Asian Juglans species using restriction site-associated DNA-sequencing. Front Plant Sci. 2017;8:1708.
  • Davey JW, Cezard T, Fuentes P, et al. Special features of RAD sequencing data: implications for genotyping. Mol Ecol. 2013;22(11):3151–3164.
  • Pollegioni P, Olimpieri I, Woeste KE, et al. Barriers to interspecific hybridization between Juglans nigra L. and J. regia L species. Tree Genet Genomes. 2013;9(1):291–305.
  • Valdisser P, Pappas GJ, De Menezes IPP, et al. SNP discovery in common bean by restriction-associated DNA (RAD) sequencing for genetic diversity and population structure analysis. Mol Genet Genomics. 2016;291(3):1277–1291.
  • Roor W, Konrad H, Mamadjanov D, et al. Population differentiation in common walnut (Juglans regia L.) across major parts of its native range-insights from molecular and morphometric data. J Hered. 2017;108(4):391–404.
  • Han H, Woeste KE, Hu Y, et al. Genetic diversity and population structure of common walnut (Juglans regia) in China based on EST-SSRs and the nuclear gene phenylalanine ammonia-lyase (PAL. Tree Genet Genomes. 2016;12(6):111.
  • Wang H, Pan G, Ma Q, et al. The genetic diversity and introgression of Juglans regia and Juglans sigillata in Tibet as revealed by SSR markers. Tree Genet Genomes. 2015;11(1):1–11.
  • Meng P, Zhao S, Niu X, et al. Involvement of the Interleukin-23/Interleukin-17 axis in chronic Hepatitis C virus infection and its treatment responses. IJMS. 2016;17(7):1070.
  • Huang X, Wei X, Sang T, et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet. 2010;42(11):961–967.
  • Aradhya M, Velasco D, Ibrahimov Z, et al. Genetic and ecological insights into glacial refugia of walnut (Juglans regia L.). PLoS One. 2017;12(10):e0185974.
  • Yuan XY, Sun YW, Bai XR, et al. Population structure, genetic diversity, and gene introgression of two closely related walnuts (Juglans regia and J. sigillata) in southwestern China revealed by EST-SSR markers. Forests. 2018;9(10):646.
  • Bradic M, Beerli P, Garcia-de LF, et al. Gene flow and population structure in the Mexican blind cavefish complex (Astyanax mexicanus). BMC Evol Biol. 2012;12:9.
  • Ward M, Dick C, Gribel R, et al. To self, or not to self. A review of outcrossing and pollen-mediated gene flow in neotropical trees. Heredity (Edinb). 2005;95(4):246–254.
  • Nielsen R. Molecular signatures of natural selection. Annu Rev Genet. 2005;39:197–218.
  • Morris GP, Ramu P, Deshpande SP, et al. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA. 2013;110(2):453–458.