1,080
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Comparative transcriptome analysis of lingonberry (Vaccinium vitis-idaea) provides insights into genes associated with flavonoids metabolism during fruit development

ORCID Icon, , , , & ORCID Icon
Pages 1252-1264 | Received 22 Mar 2020, Accepted 26 Jul 2020, Published online: 19 Nov 2020

References

  • Galletta GJ, Ballington JR. Blueberries, cranberries, and lingonberries. In: Janick J, Moore JN, editors. Vol. 2. Fruit breeding, vine and small fruits. Hoboken (NJ): Wiley; 1996. p. 65–83.
  • Karppinen K, Zoratti L, Nguyenquynh N, et al. On the developmental and environmental regulation of secondary metabolism in Vaccinium spp. berries. Front Plant Sci. 2016;7:655.
  • Vander Kloet SP. The genus Vaccinium in North America. In:Molly W, Sharon R, Frances S, editors. Monograph. Wolfville, Nova Scotia, Canada: Biology Department of Acadia University, Wolfville; 1988.
  • Hokkanen J, Mattila S, Jaakola L, et al. Identification of phenolic compounds from lingonberry (Vaccinium vitis-idaea L.), bilberry (Vaccinium myrtillus L.) and hybrid bilberry (Vaccinium x intermedium Ruthe L.) leaves. J Agric Food Chem. 2009;57(20):9437–9447.
  • Jungfer E, Zimmermann BF, Ruttkat A, et al. Comparing procyanidins in selected Vaccinium species by UHPLC-MS(2) with regard to authenticity and health effects. J Agric Food Chem. 2012;60(38):9688–9696.
  • Heyman L, Axling U, Blanco N, et al. Evaluation of beneficial metabolic effects of berries in high-fat Fed C57BL/6J Mice. J Nutr Metab. 2014;2014:403041.
  • Isaak CK, Petkau JC, O K, et al. Manitoba lingonberry (Vaccinium vitis-idaea) bioactivities in ischemia-reperfusion injury. J Agric Food Chem. 2015;63(23):5660–5669.
  • Hossain MZ, Shea E, Daneshtalab M, et al. Chemical analysis of extracts from Newfoundland berries and potential neuroprotective effects. Antioxidants. 2016;5(4):36.
  • Hall IV, Shay JM. The biological flora of Canada, 3: Vaccinium vitis-idaea L. var. minus. Lodd. Supplementary account. Can Field Nat. 1981;95:434–464.
  • Del Valle JC, Alcalde-Eon C, Escribano-Bailón MT, et al. Stability of petal color polymorphism: the significance of anthocyanin accumulation in photosynthetic tissues. BMC Plant Biol. 2019;19(1):496.
  • Garzón GA, Narváez CE, Riedl KM, et al. Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chem. 2010;122(4):980–986.
  • Ieri F, Martini S, Innocenti M, et al. Phenolic distribution in liquid preparations of Vaccinium myrtillus L. and Vaccinium vitis idaea L. Phytochem Anal. 2014;24:467–475.
  • Mikulic-Petkovsek M, Schmitzer V, Slatnar A, et al. A comparison of fruit quality parameters of wild bilberry (Vaccinium myrtillus L.) growing at different locations. J Sci Food Agric. 2015;95(4):776–785.
  • Bujor OC, Tanase C, Popa ME. Phenolic antioxidants in aerial parts of wild Vaccinium species: towards pharmaceutical and biological properties. Antioxidants. 2019;8(12):649.
  • Vilkickyte G, Raudonis R, Motiekaityte V, et al. Composition of sugars in wild and cultivated lingonberries (Vaccinium vitis-idaea L.). Molecules. 2019;24(23):4225.
  • Račkauskienė I, Pukalskas A, Fiore A, et al. Phytochemical-Rich antioxidant extracts of Vaccinium Vitis-idaea L. leaves inhibit the formation of toxic maillard reaction products in food models. J Food Sci. 2019;84(12):3494–3503.
  • Strickler SR, Bombarely A, Mueller LA. Designing a transcriptome next-generation sequencing project for a nonmodel plant species. Am J Bot. 2012;99(2):257–266.
  • Mutz K-O, Heilkenbrinker A, Lönne M, et al. Transcriptome analysis using next-generation sequencing. Curr Opin Biotechnol. 2013;24(1):22–30.
  • Li X, Sun H, Pei J, et al. De novo sequencing and comparative analysis of the blueberry transcriptome to discover putative genes related to antioxidants. Gene. 2012;511(1):54–61.
  • Zifkin M, Jin A, Ozga JA, et al. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism. Plant Physiol. 2012;158(1):200–202.
  • Polashock J, Zelzion E, Fajardo D, et al. The American cranberry: first insights into the whole genome of a species adapted to bog habitat. BMC Plant Biol. 2014;14:165.
  • Sun H, Liu Y, Gai Y, et al. De novo sequencing and analysis of the cranberry fruit transcriptome to identify putative genes involved in flavonoid biosynthesis, transport and regulation. BMC Genomics. 2015;16:652.
  • Walworth AE, Chai B, Song GQ. Transcript profile of flowering regulatory genes in VcFT-Overexpressing Blueberry Plants. PLoS One. 2016;11(6):e0156993.
  • Wootton-Beard PC, Moran A, Ryan L. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin-Ciocalteu methods. Food Res Int. 2011;44(1):217–224.
  • Wen-Fang MA, Hui-Lian D, Yi C, et al. Research on the determination of total flavonoids content and colour reaction system in Scoparia dulcis. Chin J Exp Tradition Med Form. 2013;19(03):112–115.
  • Song IK, Rahim MA, Afrin KS. Expression of anthocyanin biosynthesis-related genes reflects the peel color in purple tomato. Hortic Environ Biotechnol. 2018;59(3):435–445.
  • Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–652.
  • Pertea G, Huang X, Liang F, et al. TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics. 2003;19(5):651–652.
  • Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol. 19901;215(3):403–410.
  • Gish W, States DJ. Identification of protein coding regions by database similarity search. Nat Genet. 1993;3(3):266–272.
  • Iseli C, Jongeneel CV, Bucher P. ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol. 1999;99:138–148.
  • Conesa A, Götz S, García-Gómez JM, et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–3676.
  • Ye J, Fang L, Zheng H, et al. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res. 2006;34:W293–W 297.
  • Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:D480–D48 4.
  • Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res. 1997;7(10):986–995.
  • Kim KI, van de Wiel MA. Effects of dependence in high-dimensional multiple testing problems. BMC Bioinformatics. 2008;9:114.
  • Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45.
  • Bhullar KS, Rupasinghe HP. Antioxidant and cytoprotective properties of partridgeberry polyphenols. Food Chem. 2015;168:595–605.
  • Dróżdż P, Šėžienė V, Pyrzynska K. Phytochemical Properties and Antioxidant Activities of Extracts from Wild Blueberries and Lingonberries. Plant Foods Hum Nutr. 2017;72(4):360–364.
  • Buer CS, Imin N, Djordjevic MA. Flavonoids: new roles for old molecules. J Integr Plant Biol. 2010;52(1):98–111.
  • Jaakola L, Määttä K, Pirttilä AM, et al. Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiol. 2002;130(2):729–739.
  • Petrussa E, Braidot E, Zancani M, et al. Plant flavonoids-biosynthesis, transport and involvement in stress responses. Int J Mol Sci. 2013;14(7):14950–14973.
  • Springob K, Nakajima J, Yamazaki M, et al. Recent advances in the biosynthesis and accumulation of anthocyanins. Nat Prod Rep. 2003;20(3):288–303.
  • Yazaki K. Transporters of secondary metabolites. Curr Opin Plant Biol. 2005;8(3):301–307.
  • Zhao J. Flavonoid transport mechanisms: how to go, and with whom. Trends Plant Sci. 2015;20(9):576–585.
  • Zhao J, Dixon RA. The ‘ins’ and ‘outs’ of flavonoid transport. Trends Plant Sci. 2010;15(2):72–80.
  • Ichino T, Fuji K, Ueda H, et al. Hara-Nishimura I. GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in Arabidopsis thaliana. Plant J. 2014;80(3):410–423.
  • Hichri I, Barrieu F, Bogs J, et al. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot. 2011;62(8):2465–2483.
  • Koes R, Verweij W, Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 2005;10(5):236–242.
  • Li S. Transcriptional control of flavonoid biosynthesis: fine-tuning of the MYB-bHLH-WD40 (MBW) complex. Plant Signal Behav. 2014;9(1):e27522.
  • Xu W, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci. 2015;20(3):176–185.
  • Chezem WR, Clay NK. Regulation of plant secondary metabolism and associated specialized cell development by MYBs and bHLHs. Phytochemistry. 2016;131:26–43.
  • Jaakola L, Poole M, Jones MO, et al. A SQUAMOSA MADS box gene involved in the regulation of anthocyanin accumulation in bilberry fruits. Plant Physiol. 2010;153(4):1619–1629.
  • Primetta AK, Karppinen K, Riihinen KR, Jaakola L. Metabolic and molecular analyses of white mutant Vaccinium berries show down-regulation of MYBPA1-type R2R3 MYB regulatory factor. Planta. 2015;242(3):631–643.