1,764
Views
14
CrossRef citations to date
0
Altmetric
Article

Comparative proteomics analysis of two maize hybrids revealed drought-stress tolerance mechanisms

, , , , , , & show all
Pages 763-780 | Received 10 Feb 2020, Accepted 29 Jul 2020, Published online: 12 Aug 2020

References

  • Wang N, Liang LI, Gao WW, et al. Transcriptomes of early developing tassels under drought stress reveal differential expression of genes related to drought tolerance in maize. J Integr Agric. 2018;17(6):1276–1288.
  • Gong F, Yang L, Tai F, et al. “Omics” of maize stress response for sustainable food production: opportunities and challenges. OMICS. 2014;18(12):714–732.
  • Li GK, Gao J, Peng H, et al. Proteomic changes in maize as a response to heavy metal (lead) stress revealed by iTRAQ quantitative proteomics. Genet Mol Res. 2016;15(1).
  • Shikha M, Pooja B, Mallikarjuna MG, et al. Structural, functional, and evolutionary characterization of major drought transcription factors families in maize. Front Chem. 2018;6:177.
  • Liu Y, Zhou M, Gao Z, et al. RNA-seq analysis reveals mapkkk family members related to drought tolerance in maize. PLoS One. 2015;10(11):e0143128.
  • Du CY, Duan ZY, Wang JX, et al. Drought resistance of eight maize varieties at seedling stage in Yunnan Province. Plant Dis Pests. 2015;6:28–34.
  • Alam I, Sharmin SA, Kim KH, et al. Proteome analysis of soybean roots subjected to short-term drought stress. Plant Soil. 2010;333(1–2):491–505.
  • Gao ZY, Liu H, Wang HL, et al. Generation of the genetic mutant population for the screening and characterization of the mutants in response to drought in maize. Chin Sci Bull. 2014;59(8):766–775.
  • Yang LM, Jiang TB, Fountain JC, et al. Protein profiles reveal diverse responsive signaling pathways in kernels of two maize inbred lines with contrasting drought sensitivity. Int J Mol Sci. 2014;15(10):18892–18918.
  • Zheng J, Fu J, Gou M, et al. Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Plant Mol Biol. 2010;72(4–5):407–421.
  • Budak H, Hussain B, Khan Z, et al. From genetics to functional genomics: improvement in drought signaling and tolerance in wheat. Front Plant Sci. 2015;6:1012.
  • Zong N, Li X-J, Wang L, et al. Maize ABP2 enhances tolerance to drought and salt stress in transgenic arabidopsis. J Integr Agric. 2018;17(11):2379–2393.
  • Cui LM, Wang XX, Xuan HD, et al. Changes in several physiological and biochemical indices of maize seedling roots caused by drought stress. Plant Dis Pests. 2015;6:35–37.
  • Hoque MIU, Nesar Uddin M, Fakir Rasel MSA, et al. Drought and salinity affect leaf and root anatomical structures in three maize genotypes. J Bangladesh Agric Univ. 2018;16(1):47–55.
  • Westgate ME. Water status and development of the maize endosperm and embryo during drought. Crop Sci. 1994;34(1):76–83.
  • Tahmasebi S, Heidari B, Pakniyat H, et al. Independent and combined effects of heat and drought stress in the Seri M82 × Babax bread wheat population. Plant Breed. 2014;133(6):702–711.
  • Bin Z, Li W, Chang X, et al. Effects of favorable alleles for water-soluble carbohydrates at grain filling on grain weight under drought and heat stresses in wheat. PLoS One. 2014;9(7):e102917.
  • Wang Z, Jiang J, Liao Y, et al. Risk assessment of maize drought hazard in the middle region of farming-pastoral ecotone in northern china. Nat Hazards. 2015;76(3):1515–1534.
  • Lei L, Shi J, Chen J, et al. Ribosome profiling reveals dynamic translational landscape in maize seedlings under drought stress. Plant J. 2015;84(6):1206–1218.
  • Liu XD, Xh L, Wh L, et al. Analysis on difference for drought responses of maize breeds at seedling stage. J Maize Sci. 2004;3:63–65.
  • Bin WU, Li XH, Mu JX, et al. Genetic variation in fifty-three maize breeds in relation to drought tolerance at seedling stage. Sci Agric Sin. 2007;4:665–676.
  • Jurgens SK, Johnson RR, Boyer JS. Dry matter production and translocation in maize subjected to drought during grain fill. Agron J. 1978;70(4):678–682.
  • Lu DL, Cai XM, Lu WP. Effects of water deficit during grain filling on the physicochemical properties of waxy maize starch. Starch. 2015;67(7–8):692–700.
  • Jin XN, Fu ZY, Ding D, et al. Proteomic identification of genes associated with maize grain-filling rate. PLoS One. 2013;8(3):e59353.
  • Zhilan X, Han K, Gu L, et al. Transcriptome analysis of heterosis in maize (Zea mays L.) hybrid longping 206. J Agric Biotechnol. 2017;25:709–721.
  • Li G, Gao HY, Zhao B, et al. Effects of drought stress on activity of photosystems in leaves of maize at grain filling stage. Acta Agronom Sin. 2009;35(10):1916–1922.
  • Mu XH, Chen QW, Chen FJ, et al. Within-leaf nitrogen allocation in adaptation to low nitrogen supply in maize during grain-filling stage. Front Plant Sci. 2016;7:699.
  • Geng LI, Hui-Yuan G, Peng L, et al. Effects of nitrogen fertilization on photosynthetic performance in maize leaf at grain filling stage. Plant Nutr Fertil Sci. 2010;16:536–542.
  • Kosová K, Vítámvás P, Prášil IT, et al. Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response. J Proteomics. 2011;74(8):1301–1322.
  • Si W, Fen N, Qinbin Z, et al. Enhancing omics research of crop responses to drought under field conditions. Front Plant Sci. 2017;8:174.
  • Pérez-Clemente RM, Vives V, Zandalinas SI, et al. Biotechnological approaches to study plant responses to stress. Biomed Res Int. 2013;2013:654120.
  • Shuzhen W, Wenyue C, Wenfei X, et al. Differential proteomic analysis using itraq reveals alterations in hull development in rice (Oryza sativa L.). PLoS One. 2015;10(7):e0133696.
  • Ma C, Zhou J, Chen G, et al. iTRAQ-based quantitative proteome and phosphoprotein characterization reveals the central metabolism changes involved in wheat grain development. BMC Genomics. 2014;15:1029.
  • Jin HY, Liu ST, Zenda T, et al. Maize leaves drought-responsive genes revealed by comparative transcriptome of two cultivars during the filling stage. PLoS One. 2019;14(10):e0223786.
  • Hsiao TC. Plant responces to water stress. Annu Rev Plant Physiol. 1973;24(1):519–570.
  • Swägger H. Tricine-SDS-PAGE. Nat Protoc. 2006;1:16–22.
  • Liu XD, Xie L, Wei Y, et al. Abiotic stress resistance, a novel moonlighting function of ribosomal protein rpl44 in the halophilic fungus aspergillus glaucus. Appl Environ Microbiol. 2014;80(14):4294–4300.
  • Cui D, Wu D, Liu J, et al. Proteomic analysis of seedling roots of two maize inbred lines that differ significantly in the salt stress response. PLoS One. 2015;10(2):e0116697.
  • Tai FJ, Yuan ZL, Wu XL, et al. Identification of membrane proteins in maize leaves, altered in expression under drought stress through polyethylene glycol treatment. Report. Plant Omics. 2011;4:250–256.
  • Benešová M, Holá D, Fischer L, et al. The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration? PLoS One. 2012;7(6):e38017.
  • Shu LB, Ding W, Wu JH, et al. Proteomic analysis of rice leaves shows the different regulations to osmotic stress and stress signals. J Integr Plant Biol. 2010;52(11):981–995.
  • Mazzucotelli E, Mastrangelo AM, Crosatti C, et al. Abiotic stress response in plants: when post-transcriptional and post-translational regulations control transcription. Plant Sci. 2008;174(4):420–431.
  • Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol. 2006;57:781–803.
  • Rushton PJ, Somssich IE. Transcriptional control of plant genes responsive to pathogens. Curr Opin Plant Biol. 1998;1(4):311–315.
  • Mesbah K, Camus A, Babinet C, et al. Mutation in the Trapalpha/Ssr1 gene, encoding translocon-associated protein alpha, results in outflow tract morphogenetic defects. Mol Cell Biol. 2006;26(20):7760–7771.
  • Fons RD, Bogert BA, Hegde RS. Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane. J Cell Biol. 2003;160(4):529–539.
  • Kang Y, Udvardi M. Global regulation of reactive oxygen species scavenging genes in alfalfa root and shoot under gradual drought stress and recovery. Plant Signal Behav. 2012;7(5):539–543.
  • Farooq M, Wahid A, Kobayashi N, et al. Plant drought stress: effects, mechanisms and management. Agronom Sustain Agric. 2009;29:185–212.
  • Nakano R, Matsumura T, Sakakibara H, et al. Cloning of maize ferredoxin iii gene: presence of a unique repetitive nucleotide sequence within an intron found in the 5'-untranslated region. Plant Cell Physiol. 1997;38(10):1167–1170.
  • Alam J, Whitaker RA, Krogmann DW, et al. Isolation and sequence of the gene for ferredoxin i from the cyanobacterium anabaena sp. strain pcc 7120. J Bacteriol. 1986;168(3):1265–1271.
  • Sofo A, Dichio B, Xiloyannis C, et al. Antioxidant defences in olive trees during drought stress: changes in activity of some antioxidant enzymes. Funct Plant Biol. 2005;32(1):45–53.
  • Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell. 1995;80(2):225–236.
  • Ding X, Cao Y, Huang L, et al. Activation of the indole-3-acetic acid-amido synthetase gh3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell. 2008;20(1):228–240.
  • Peat TS, Bottcher C, Newman J, et al. Crystal structure of an indole-3-acetic acid amido synthetase from grapevine involved in auxin homeostasis. Plant Cell. 2012;24(11):4525–4538.
  • Fatmi MQ, Chang CEA, Mozzarelli A. The role of oligomerization and cooperative regulation in protein function: the case of tryptophan synthase. PLoS Comput Biol. 2010;6(11):e1000994.
  • Hinchman SK, Henikoff S, Schuster SM. A relationship between asparagine synthetase A and aspartyl tRNA synthetase. J Biol Chem. 1992;267(1):144–149.
  • Pickart CM, Rose IA. Mechanism of ubiquitin carboxyl-terminal hydrolase. borohydride and hydroxylamine inactivate in the presence of ubiquitin. J Biol Chem. 1986;261(22):10210–10217.
  • Pickart CM, Rose IA. Ubiquitin carboxyl-terminal hydrolase acts on ubiquitin carboxyl-terminal amides. J Biol Chem. 1985;260(13):7903–7910.
  • Zhang Z, Li J, Liu H, et al. Roles of ubiquitination-mediated protein degradation in plant responses to abiotic stresses. Environ Exp Bot. 2015;114:92–103.
  • Pace HC, Brenner C. The nitrilase superfamily: classification, structure and function. Genome Biol. 2001;2(1):REVIEWS0001.
  • Brenner C. Catalysis in the nitrilase superfamily. Curr Opin Struct Biol. 2002;12(6):775–782.
  • Rincón-Limas DE, Krueger DA, Patel PI. Functional characterization of the human hypoxanthine phosphoribosyltransferase gene promoter: evidence for a negative regulatory element. Mol Cell Biol. 1991;11(8):4157–4164.
  • Ding H, Yue LJ, Yang CL. Progress in the study of hypoxanthine guanine phosphoribtransferase. Genetics. 2013;35:948–954.
  • Francone OL, Gurakar A, Fielding C. Distribution and functions of lecithin:cholesterol acyltransferase and cholesteryl ester transfer protein in plasma lipoproteins. Evidence for a functional unit containing these activities together with apolipoproteins A-I and D that catalyzes the esterif. The J Biol Chem. 1989;264:7066–7072.
  • Persson O, Valadi A, Thomas N, et al. Metabolic control of the Escherichia coli universal stress protein response through fructose-6-phosphate. Mol Microbiol. 2007;65(4):968–978.
  • Isokpehi RD, Simmons SS, Cohly Ekunwe SIN, et al. Identification of drought-responsive universal stress proteins in viridiplantae. Bioinform Biol Insights. 2011;5:41–58.
  • Tkaczuk KLA, Shumilin I, Chruszcz M, et al. Structural and functional insight into the universal stress protein family. Evol Appl. 2013;6(3):434–449.
  • Loukehaich R, Wang T, Ouyang BZ, et al. SpUSP, an annexin-interacting universal stress protein, enhances drought tolerance in tomato. J Exp Bot. 2012;63(15):5593–5606.
  • Sridhar VV, Kapoor A, Zhang K, et al. Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature. 2007;447(7145):735–738.
  • Liu X, Luo M, Zhang W, et al. Histone acetyltransferases in rice (Oryza sativa L.): phylogenetic analysis, subcellular localization and expression. BMC Plant Biol. 2012;12:145.
  • Chinnusamy V, Zhu J-K. Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol. 2009;12(2):133–139.
  • Pan LN. [Epigenetic regulation of abiotic stress response in plants to improve the stress tolerance]. Yi Chuan. 2013;35(6):745–751.
  • Tariq M, Saze H, Probst AV, et al. Erasure of cpg methylation in arabidopsis alters patterns of histone h3 methylation in heterochromatin. Proc Natl Acad Sci USA. 2003;100(15):8823–8827.
  • Sokol A, Kwiatkowska A, Jerzmanowski A, et al. Up-regulation of stress-inducible genes in tobacco and arabidopsis cells in response to abiotic stresses and aba treatment correlates with dynamic changes in histone h3 and h4 modifications. Planta. 2007;227(1):245–254.,
  • Sun ZW, Allis CD. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature. 2002;418(6893):104–108.
  • Ng HH, Xu RM, Zhang Y, et al. Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J Biol Chem. 2002;277(38):34655–34657.
  • Ohki I, Shimotake N, Fujita N, et al. Solution structure of the methyl-CpG-binding domain of the methylation-dependent transcriptional repressor MBD1. EMBO (European Molecular Biology Organization). EMBO J. 1999;18(23):6653–6661.
  • Roloff TC, Ropers HH, Nuber UA. Comparative study of methyl-CpG-binding domain proteins. BMC Genomics. 2003;4(1):1.
  • Du Q, Luu PL, Stirzaker C, et al. Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics. 2015;7(6):1051–1073.
  • Callahan MA, Handley MA, Lee YH, et al. Functional interaction of human immunodeficiency virus type 1 Vpu and Gag with a novel member of the tetratricopeptide repeat protein family. J Virol. 1998;72(6):5189–5197.
  • Wang H, Shen H, Wang Y, et al. Overexpression of small glutamine-rich tpr-containing protein promotes apoptosis in 7721 cells. FEBS Lett. 2005;579(5):1279–1284.
  • Allan RK, Ratajczak T. Versatile TPR domains accommodate different modes of target protein recognition and function. Cell Stress Chaperones. 2011;16(4):353–367.
  • Bennett-Lovsey R, Hart SE, Shirai H, et al. The SWIB and the MDM2 domains are homologous and share a common fold. Bioinformatics. 2002;18(4):626–630.
  • Vieira WA, Coetzer Thérèsa L. Localization and interactions of Plasmodium falciparum SWIB/MDM2 homologues. Malar J. 2016;15:32.
  • Frum R, Ramamoorthy M, Mohanraj L, et al. MDM2 controls the timely expression of cyclin A to regulate the cell cycle. Mol Cancer Res. 2009;7(8):1253–1267.
  • Kushwaha HR, Singh AK, Sopory SK, et al. Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L.), Heynh and Oryza sativa L. reveals their developmental and stress regulation. BMC Genomics. 2009;10:200.
  • Zhu QL, Li MY, Liu GD, et al. Molecular characterization and functional prediction of novel leaf sag encoding a CBS-domain-containing protein from coleus blumei. Chin J Biochem Mol Biol. 2007;23:262–270.
  • Singh AK, Kumar R, Pareek A, et al. Overexpression of rice cbs domain containing protein improves salinity, oxidative, and heavy metal tolerance in transgenic tobacco. Mol Biotechnol. 2012;52(3):205–216.
  • Salem AMH, Nakano T, Takuwa M, et al. Genetic analysis of repair and damage tolerance mechanisms for DNA-protein cross-links in escherichia coli. J Bacteriol. 2009;191(18):5657–5668.
  • Karran P, Bignami M. DNA damage tolerance, mismatch repair and genome instability. Bioessays. 1994;16(11):833–839.
  • Chen YH, Szakal B, Castellucci F, et al. DNA damage checkpoint and recombinational repair differentially affect the replication stress tolerance of Smc6 mutants. Mol Biol Cell. 2013;24(15):2431–2441.
  • Li X, Heyer W. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res. 2008;18(1):99–113.
  • Roche Y, Zhang D, Segers-Nolten GMJ, et al. Fluorescence correlation spectroscopy of the binding of nucleotide excision repair protein XPC-hHr23B with DNA substrates. J Fluoresc. 2008;18(5):987–995.
  • Rodrigo G, Roumagnac S, Wold MS, et al. DNA replication but not nucleotide excision repair is required for uvc-induced replication protein a phosphorylation in mammalian cells. Mol Cell Biol. 2000;20(8):2696–2705.
  • Hoogstraten D, Bergink S, Verbiest VHM, et al. Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC. J Cell Sci. 2008;121(Pt 17):2850–2859.
  • Min JH, Pavletich NP. Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature. 2007;449(7162):570–575.
  • Jaciuk M, Nowak E, Skowronek K, et al. Structure of uvra nucleotide excision repair protein in complex with modified DNA. Nat Struct Mol Biol. 2011;18(2):191–197.
  • Zenda T, Liu S, Wang X, et al. Comparative proteomic and physiological analyses of two divergent maize inbred lines provide more insights into drought-stress tolerance mechanisms. IJMS. 2018;19(10):3225.
  • Wang X, Zenda T, Liu S, et al. Comparative proteomics and physiological analyses reveal important maize filling-kernel drought-responsive genes and metabolic pathways. IJMS. 2019;20(15):3743.