1,311
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Molecular cloning and bioinformatics analyses of a GH3 beta-glucosidase from Auricularia heimuer

, , , &
Pages 850-859 | Received 25 Apr 2020, Accepted 05 Aug 2020, Published online: 19 Aug 2020

References

  • Li L, Zhong CH, Bian YB. The molecular diversity analysis of Auricularia auricula-judae in China by nuclear ribosomal DNA intergenic spacer. Electron J Biotechn. 2014;17(1):27–33.
  • Royse DJ, Singh M. A global perspective on the high five: Agaricus, Pleurotus, Lentinula, Auricularia & Flammulina. International Conference on Mushroom Biology & Mushroom Products. 2014. New Delhi, India.
  • Zeng WC, Zhang Z, Gao H, et al. Characterization of antioxidant polysaccharides from Auricularia auricular using microwave-assisted extraction. Carbohydr Polym. 2012;89(2):694–700.
  • Cai M, Lin Y, Luo YL, et al. Extraction, antimicrobial, and antioxidant activities of crude polysaccharides from the wood ear medicinal mushroom Auricularia auricula-judae (Higher Basidiomycetes). Int J Med Mushrooms. 2015;17(6):591–600.
  • Lu A, Yu M, Shen M, et al. Antioxidant and anti-diabetic effects of Auricularia auricular polysaccharides and their degradation by artificial gastrointestinal digestion-Bioactivity of Auricularia auricular polysaccharides and their hydrolysates. Acta Sci Pol Technol Aliment. 2018;17(3):277–288.
  • Qiu J, Zhang H, Wang Z, et al. The antitumor effect of folic acid conjugated-Auricularia auricular polysaccharide-cisplatin complex on cervical carcinoma cells in nude mice. Int J Biol Macromol. 2018;107(Pt B):2180–2189.
  • Lu A, Yu M, Shen M, et al. Preparation of the Auricularia auricular polysaccharides simulated hydrolysates and their hypoglycaemic effect. Int J BIol Macromol. 2018; 106:1139–1145.
  • Hu T, Li L, Hui GF, et al. Selenium biofortification and its effect on multi-element change in Auricularia auricular. Food Chem. 2019; 295:206–213.
  • Rajasree KP, Mathew GM, Pandey A, et al. Highly glucose tolerant β-glucosidase from Aspergillus unguis: NII 08123 for enhanced hydrolysis of biomass. J Ind Microbiol Biotechnol. 2013;40(9):967–975.
  • Tilman D, Hill J, Lehman C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science. 2006;314(5805):1598–1600.
  • Parisutham V, Kim TH, Lee SK. Feasibilities of consolidated bioprocessing microbes: from pretreatment to biofuel production. Bioresour Technol. 2014; 161:431–440.
  • Lindenmuth BE, Mcdonald KA. Production and characterization of Acidothermus cellulolyticus endoglucanase in Pichia pastoris. Protein Expr Purif. 2011;77(2):153–158.
  • Bohlin C, Praestgaard E, Baumann MJ, et al. A comparative study of hydrolysis and transglycosylation activities of fungal β-glucosidases. Appl Microbiol Biotechnol. 2013;97(1):159–169.
  • Bhatia Y, Mishra S, Bisaria VS. Microbial beta-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol. 2002;22(4):375–407.
  • Singhania RR, Patel A, Pandey A, et al. Genetic modification: a tool for enhancing beta-glucosidase production for biofuel application. Bioresour Technol. 2017;245(Pt B):1352–1361.
  • Jiang W, Wang W, Pan B, et al. Facile and green fabrication of biocatalytic chitosan beads by one-step genipin-mediated β-glucosidase immobilization for production of bioactive genistein. ACS Appl Mater Interfaces. 2014;6(5):3421–3426.
  • Tian L, Liu S, Wang S, et al. Ligand-binding specificity and promiscuity of the main lignocellulolytic enzyme families as revealed by active-site architecture analysis. Sci Rep. 2016; 6(1):23605.
  • Crespim E, Zanphorlin LM, de Souza FH, et al. A novel cold-adapted and glucose-tolerant GH1 β-glucosidase from Exiguobacterium antarcticum B7 . Int J Biol Macromol. 2016; 82:375–380.
  • Singhania RR, Patel AK, Sukumaran RK, et al. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol. 2013; 127:500–507.
  • Salgado JCS, Meleiro LP, Carli S, et al. Glucose tolerant and glucose stimulated β-glucosidases - A review. Bioresour Technol. 2018; 267:704–713.
  • Bayer EA, Lamed R, Himmel ME. The potential of cellulases and cellulosomes for cellulosic waste management. Curr Opin Biotechnol. 2007;18(3):237–245.
  • Zhang SC, Tong YX, Li YJ, et al. Genome-wide identification of the HKT genes in five Rosaceae species and expression analysis of HKT genes in response to salt-stress in Fragaria vesca. Genes Genomics. 2019;41(3):325–336.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408.
  • Li B, Renganathan V. Gene cloning and characterization of a novel cellulose-binding beta-glucosidase from Phanerochaete chrysosporium. Appl Environ Microbiol. 1998;64(7):2748–2782.
  • Cai YJ. Purification, characterization and localization of cellulolytic enzymes produced by the straw mushroom. (Ph.D Dissertation). Volvariella volvacea. 1996.
  • Sun J, Wang SX, Wang XT, et al. Cloning and expression analyses of a cellobiohydrolase gene from Auricularia heimuer. Biotechnol Biotec Eq. 2019;33(1):1327–1334.
  • Ding SJ, Ge W, Buswell JA. Molecular cloning and transcriptional expression analysis of an intracellular beta-glucosidase, a family 3 glycosyl hydrolase, from the edible straw mushroom, Volvariella volvacea. FEMS Microbiol Lett. 2007;267(2):221–229.
  • Claydon N, Allan M, Wood DA. Fruit body biomass regulated production of extracellular endocellulase during periodic fruiting by Agaricus bisporus. Transact Br Mycol Soc. 1988;90(1):85–90.
  • Wang Q, Chen L, Fang CY, et al. The overexpression of one single cbh gene making Trichoderma asperellum T-1 a better cellulase producer. Ann Microbiol. 2019;69(7):673–683.
  • Barnett CC, Berka RM, Fowler T. Cloning and amplification of the gene encoding an extracellular beta-glucosidase from Trichoderma reesei: evidence for improved rates of saccharification of cellulosic substrates . Biotechnology (NY).). 1991;9(6):562–567.
  • Cho EJ, Nguyen QA, Lee YG, et al. Enhanced biomass yield of and saccharification in transgenic tobacco over-expressing β-glucosidase. Biomolecules. 2020;10(5):806. [cited 2020 Jun 03]