922
Views
3
CrossRef citations to date
0
Altmetric
Article

Identification of candidate genes associated with photosynthesis in eggplant under elevated CO2

, , , , , , & show all
Pages 1166-1175 | Received 22 May 2020, Accepted 08 Aug 2020, Published online: 06 Oct 2020

References

  • Kazemi S, Eshghizadeh HR, Zahedi M. Responses of four rice varieties to elevated CO2 and different salinity levels. Rice Sci. 2018;25(3):142–151.
  • Xiao L, Liu GB, Sha X. Elevated CO2 concentration and drought stress exert opposite effects on plant biomass, nitrogen, and phosphorus allocation in bothriochloa ischaemum. J Plant Growth Reg. 2016;35(4):1–10.
  • Meng GT, Li GX, He LP, et al. Combined effects of CO2 enrichment and drought stress on growth and energetic properties in the seedlings of a potential bioenergy crop Jatropha curcas. J Plant Growth Regul. 2013;32(3):542–550.
  • Eshghizadeh HR, Zahedi M, Mohammadi S. Differential growth responses of wheat seedlings to elevated CO2. Not Sci Biol. 2018;10(3):400–409. [cited 2020 Jun 30]
  • Verrillo F, Badeck F-W, Terzi V, et al. Elevated field atmospheric CO2 concentrations affect the characteristics of winter wheat (cv. Bologna) grains. Crop Pasture Sci. 2017;68(8):713. [cited 2020 Jun 30]
  • Wang R, Zhao P, Kong N, et al. Genome-wide identification and characterization of the potato bHLH transcription factor family. Genes. 2018;9(1):54. [cited 2020 Jun 30]
  • Becker C, Kläring H-P. CO2 enrichment can produce high red leaf lettuce yield while increasing most flavonoid glycoside and some caffeic acid derivative concentrations. Food Chem. 2016;199:736–745.
  • Xu S, Zhu X, Li C, et al. Effects of CO2 enrichment on photosynthesis and growth in Gerbera jamesonii. Sci Hortic Amsterdam. 2014;177:77–84.
  • Cohen I, Rapaport T, Berger RT, et al. The effects of elevated CO2 and nitrogen nutrition on root dynamics. Plant Sci. 2018;272:294–300.
  • Thongbai P, Kozai T, Ohyama K. CO2 and air circulation effects on photosynthesis and transpiration of tomato seedlings. Sci Hortic. 2010;126(3):338–344.
  • Jacotot A, Marchand C, Gensous S, et al. Effects of elevated atmospheric CO2 and increased tidal flooding on leaf gas-exchange parameters of two common mangrove species: Avicennia marina and Rhizophora stylosa. Photosyn Res. 2018;138(2):249–260.
  • Li P, Li H, Zong Y, et al. Photosynthesis and metabolite responses of Isatis indigotica Fortune to elevated CO2 Crop J. 2017;5(4):345–353.
  • Xu Z, Shimizu H, Yagasaki Y, et al. Interactive effects of elevated CO2, drought, and warming on plants. J Plant Growth Regul. 2013;32(4):692–707.
  • Souza APD, Gaspar M, Silva EAD, et al. (2010. Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant Cell Environ. 2008;31(8):1116–1127.
  • Lotfiomran N, Kohl M, Fromm J. Interaction effect between elevated CO2 and fertilization on biomass, gas exchange and C/N ratio of European beech (Fagus sylvatica L.). Plants (Basel). 2016;5(3):38. [cited 2020 Jun 30]
  • Wei H, Gou J, Yordanov Y, et al. Global transcriptomic profiling of aspen trees under elevated [CO2] to identify potential molecular mechanisms responsible for enhanced radial growth. J Plant Res. 2013;126(2):305–320.
  • Jiang YQ, Li T, Zhang M, et al. WSN-based control system of CO2 concentration in greenhouse. Intell Autom Soft Co. 2015;21(3):285–294.
  • Sun J, Gibson KM, Kiirats O, et al. Interactions of nitrate and CO2 enrichment on growth, carbohydrates, and rubisco in Arabidopsis starch mutants. Significance of starch and hexose. Plant Physiol. 2002;130(3):1573–1583.
  • Zheng S, Chen Z, Nie H, et al. Identification of differentially expressed photosynthesis- and sugar synthesis-related genes in tomato (Solanum lycopersicum) plants grown under different CO2 concentrations. Biotechnol Biotechnol Equip. 2020;34(1):84–92. [cited 2020 Jun 30]
  • Song H, Li Y, Xu X, et al. Analysis of genes related to chlorophyll metabolism under elevated CO2 in cucumber (Cucumis sativus L.). Sci Hortic. 2020;261:108988. [cited 2020 Jun 30]
  • Florea L, Song L, Salzberg SL. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues. F1000Res. 2013;2(188):188–188.
  • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106–2011.
  • Yuan Q, Song C, Gao L, et al. Transcriptome de novo assembly and analysis of differentially expressed genes related to cytoplasmic male sterility in onion. Plant Physiol Biochem. 2018;125:35–44.
  • Becklin KM, Walker SM, 2nd, Way DA, et al. CO2 studies remain key to understanding a future world. New Phytol. 2017;214(1):34–40.
  • Yi-Hsuan C, Zubo YO, Wiebke T, et al. Functional characterization of the GATA transcription factors GNC and CGA1 reveals their key role in chloroplast development, growth, and division in Arabidopsis. Plant Physiol. 2012;160(1):332–348.
  • Ainsworth EA, Davey PA, Bernacchi CJ, et al. A meta‐analysis of elevated CO2 effects on soybean (Glycine max) physiology, growth and yield. Global Change Biol. 2002;8(8):695–709.
  • Zhang S, Fu W, Zhang Z, et al. Effects of elevated CO2 concentration and temperature on some physiological characteristics of cotton (Gossypium hirsutum L.) leaves. Environ Exp Bot. 2017;133:108–117.
  • Sharma R, Singh H, Kaushik M, et al. Adaptive physiological response, carbon partitioning, and biomass production of Withania somnifera (L.) Dunal grown under elevated CO2 regimes. 3 Biotech. 2018;8(6):267. [cited 2020 Jun 30]
  • Wang Y‐P, Rey A, Jarvis PG. Carbon balance of young birch trees grown in ambient and elevated atmospheric CO2 concentrations. Global Change Biol. 1998;4(8):797–807.
  • Killi D, Bussotti F, Gottardini E, et al. Photosynthetic and morphological responses of oak species to temperature and CO2 increased to levels predicted for 2050. Urban Urban Gree. 2018;31:26–37.
  • Li Z, Zhang Y, Yu D, et al. The influence of precipitation regimes and elevated CO2 on photosynthesis and biomass accumulation and partitioning in seedlings of the rhizomatous perennial grass Leymus chinensis. PloS One. 2014;9(8):e103633. [cited 2020 Jun 30]
  • Wu K, Li J, Luo J, et al. Effects of elevated CO2 and endophytic bacterium on photosynthetic characteristics and cadmium accumulation in Sedum alfredii. Sci. Total Environ. 2018;643:357–366.
  • Madhana Sekhar K, Rachapudi VS, Mudalkar S, et al. Persistent stimulation of photosynthesis in short rotation coppice mulberry under elevated CO2 atmosphere. J Photochem Photobiol B Biol. 2014;137:21–30.
  • Cao B, Dang QL, Zhang S. Relationship between photosynthesis and leaf nitrogen concentration in ambient and elevated CO2 in white birch seedlings. Tree Physiol. 2007;27(6):891–899.
  • Li w, Liu y, Zeng s, et al. gene expression profiling of development and anthocyanin accumulation in kiwifruit (Actinidia chinensis) based on transcriptome sequencing. PLoS One. 2015;10(8):e0136439. [cited 2020 Jun 30]
  • Zhang G, Zhang T, Liu J, et al. Comprehensive analysis of differentially expressed genes reveals the molecular response to elevated CO2 levels in two sea buckthorn cultivars. Gene. 2018;660:120–127.
  • Liu JX, Feng K, Wang GL, et al. Elevated CO2 induces alteration in lignin accumulation in celery (Apium graveolens L.). Plant Physiol Biochem. 2018;127:310–319.
  • Taylor G, Street NR, Tricker PJ, et al. The transcriptome of Populus in elevated CO2. New Phytol. 2005;167(1):143–154.
  • Yao YX, Li M, Zhai H, et al. Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synthesis. J Plant Physiol. 2011;168(5):474–480.
  • Li QF, Zhao J, Zhang J, et al. Ectopic expression of the chinese cabbage malate dehydrogenase gene promotes growth and aluminum resistance in Arabidopsis. Front Plant Sci. 2016;7:1180. [cited 2020 Jun 30]
  • Huang M, Slewinski TL, Baker RF, et al. Camouflage patterning in maize leaves results from a defect in porphobilinogen deaminase. Mol Plant. 2009;2(4):773–789.
  • Huq E, Quail PH. PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J. 2002;21(10):2441–2450.
  • Sumin L, Seunghee L, Ki-Young Y. Overexpression of PRE1 and its homologous genes activates Gibberellin-dependent responses in Arabidopsis thaliana. Plant Cell Physiol. 2006;47(5):591. [cited 2020 Jun 30]
  • An R, Liu X, Wang R, et al. The over-expression of two transcription factors, ABS5/bHLH30 and ABS7/MYB101, leads to upwardly curly leaves. PloS One. 2014;9(9):e107637.[cited 2020 Jun 30]
  • Bi YM, Zhang Y, Signorelli T, et al. Genetic analysis of Arabidopsis GATA transcription factor gene family reveals a nitrate-inducible member important for chlorophyll synthesis and glucose sensitivity. Plant J. 2005;44(4):680–692.
  • Zhi GH, Shi JN, Zhao XX, et al. overexpression of a zinc-finger protein gene AmZFPG from Ammopiptanthus mongolicus confers tolerance to cold, drought and salt stress in transgenic tobacco. Acta Hort Sinica. 2013;40(4):713–723. (in Chinese)