1,107
Views
2
CrossRef citations to date
0
Altmetric
Article

DIA (Data Independent Acquisition) proteomic based study on maize filling-kernel stage drought stress-responsive proteins and metabolic pathways

, , , , , , & show all
Pages 1198-1214 | Received 07 Jul 2020, Accepted 19 Sep 2020, Published online: 06 Oct 2020

References

  • Campos H, Cooper M, Habben JE, et al. Improving drought tolerance in maize: a view from industry. Field Crops Res. 2004;90(1):19–34.
  • International Service for Acquisition of Agri-biotech Applications (ISAAA). Biotechnology for the development of drought tolerant crops. [Internet]. 2008. [cited 2020-08-08]. Available from: http://www.isaaa.org/resources/publications/pocketk/32/default.asp
  • Dai A. Increasing drought under global warming in observations and models. Nat Clim Change. 2013;3(1):52–58.
  • Feller U, Vaseva II. Extreme climatic events: impacts of drought and high temperature on physiological processes in agronomically important plants. Front Environ Sci. 2014;2:39.
  • Zhu JK. Abiotic stress signaling and responses in plants. Cell. 2016;167(2):313–324.
  • FAO’s Director-General on How to Feed the World in 2050. Popul Dev Rev. 2009;35:837–839.
  • Maazou ARS, Tu JL, Qiu J, et al. Breeding for drought tolerance in maize (Zea mays L.). Am J Plant Sci. 2016;7:1858–1870.
  • Xu J, Yuan YB, Xu YB, et al. Identification of candidate genes for drought tolerance by whole-genome resequencing in maize. BMC Plant Biol. 2014;14:83–15.
  • Zheng J, Fu JJ, Gou MY, et al. Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Plant Mol Biol. 2010;72(4-5):407–421.
  • Sah RP, Chakraborty M, Prasad K, et al. Impact of water deficit stress in maize: phenology and yield components. Sci Rep. 2020;10(1):1–5.
  • Jurgens SK, Johnson RR, Boyer JS. Dry matter production and translocation in maize subjected to drought during grain fill. Agronj. 1978;70(4):678–682.
  • Afuakwa JJ, Crookston RK. Using the kernel milk line to visually monitor grain maturity in maize. Crop Sci. 1984;24(4):687–691.
  • Afuakwa JJ, Crookston RK, Jones RJ. Effect of temperature and sucrose availability on kernel black layer formation in maize. Crop Sci. 1984;24(2):285–288.
  • Upadhyaya H, Sahoo L, Panda SK. Molecular physiology of osmotic stress in plants. In: Rout GR, Das AB, editors Molecular stress physiology of plants. Springer India; 2013. p. 179–192.
  • Islam M, Begum MC, Kabir AH, et al. Molecular and biochemical mechanisms associated with differential responses to drought tolerance in wheat (Triticum aestivum L.). Plant Interact. 2015;10(1):195–201.
  • Bhargava S, Sawant K. Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breed. 2013;132(1):21–32.
  • Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48(12):909–930.
  • Jogaiah S, Govind SR, Tran LSP. Systems biology-based approaches toward understanding drought tolerance in food crops. Crit Rev Biotechnol. 2013;33(1):23–39.
  • Oliver SN, Dennis ES, Dolferus R. ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant Cell Physiol. 2007;48(9):1319–1330.
  • Luan MD, Xu MY, Lu YM, et al. Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves. Gene. 2015;555(2):178–185.
  • Wang G, Zhu QG, Meng QW, et al. Transcript profiling during salt stress of young cotton (Gossypium hirsutum) seedlings via Solexa sequencing. Acta Physiol Plant. 2012;34(1):107–115.
  • Jiang QY, Niu FJ, Sun XJ, et al. RNA-seq analysis of unintended effects in transgenic wheat overexpressing the transcription factor GmDREB1. The Crop Journal. 2017;5(3):207–218.
  • Min HW, Chen CX, Wei SW, et al. Identification of drought tolerant mechanisms in maize seedlings based on transcriptome analysis of recombination inbred lines. Front Plant Sci. 2016;7:1080.
  • Pour-Benab SM, Fabriki-Ourang S, Mehrabi AA. Expression of dehydrin and antioxidant genes and enzymatic antioxidant defense under drought stress in wild relatives of wheat. Biotechnol Biotechnol Equip. 2019;33(1):1063–1073.
  • Guo YX, Zhang HH, Yuan YH, et al. Identification and characterization of NAC genes in response to abiotic stress conditions in Picea wilsonii using transcriptome sequencing. Biotechnol Biotechnol Equip. 2020;34(1):93–103.
  • Jin H, Liu S, Zenda T, et al. Maize leaves drought-responsive genes revealed by comparative transcriptome of two cultivars during the filling stage. PLoS One. 2019;14(10):e0223786.
  • Zenda T, Liu S, Wang X, et al. Key maize drought-responsive genes and pathways revealed by comparative transcriptome and physiological analyses of contrasting inbred lines. Int J Mol Sci. 2019;20(6):1268.
  • Liu G, Zenda T, Liu S, et al. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize. Genes Genomics. 2020;42(8):937–955.
  • Cánovas FM, Dumas-Gaudot E, Recorbet G, et al. Plant proteome analysis. Proteomics. 2004;4(2):285–298.
  • Zhao Q, Zhang H, Wang T, et al. Proteomics-based investigation of salt-responsive mechanisms in plant roots. J Proteomics. 2013; 82:230–253.
  • Komatsu S, Hiraga S, Yanagawa Y. Proteomics techniques for the development of flood tolerant crops. J Proteome Res. 2012;11(1):68–78.
  • Wu S, Ning F, Zhang QB, et al. Enhancing omics research of crop responses to drought under field conditions. Front Plant Sci. 2017; 8:174.
  • Kosova K, Vitamvas P, Prasil IT, et al. Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. J Proteomics. 2011;74:1301–1322.
  • Yang LM, Jiang TB, Fountain JC, et al. Protein profiles reveal diverse responsive signaling pathways in kernels of two maize inbred lines with contrasting drought sensitivity. Int J Mol Sci. 2014;15(10):18892–18918.
  • Zenda T, Liu S, Wang X, et al. Comparative proteomic and physiological analyses of two divergent maize inbred lines provide more insights into drought-stress tolerance mechanisms. Int J Mol Sci. 2018;19(10):3225.
  • Liu S, Zenda T, Dong A, et al. Comparative proteomic and morpho-physiological analyses of maize wild-type Vp16 and mutant vp16 germinating seeds responses to PEG-induced drought stress. Int J Mol Sci. 2019;20(22):5586.
  • Wang X, Zenda T, Liu S, et al. Comparative proteomics and physiological analyses reveal important maize filling-kernel drought-responsive genes and metabolic pathways. Int J Mol Sci. 2019;20(15):3743.
  • Dong A, Yang Y, Liu S, et al. Comparative proteomics analysis of two maize hybrids revealed drought-stress tolerance mechanisms. Biotechnol Biotechnol Equip. 2020;34(1):763–780.
  • Olfa B, Fethi BM, Beligh M, et al. Response to drought of two olive tree cultivars (cv Koroneki and Meski). Sci Hortic. 2008;116:1–393.
  • Doerr A. DIA mass spectrometry. Nat Methods. 2015;12(1):35–35.
  • Law KP, Lim YP. Recent advances in mass spectrometry: data independent analysis and hyper reaction monitoring. Expert Rev Proteomics. 2013;10(6):551–566.
  • Chapman JD, Goodlett DR, Masselon CD. Multiplexed and data-independent tandem mass spectrometry for global proteome profiling. Mass Spectrom Rev. 2014;33(6):452–470.
  • Bruderer R, Bernhardt OM, Gandhi T, et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics. 2015;14(5):1400–1410.
  • Schgger H. Tricine-SDS-PAGE. Nat Protoc. 2006;1:16–22.
  • Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology ConsortiumNat Genet. 2000;25(1):25–29.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–408.
  • Natsume T, Tanida I, Iemura S, et al. A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier. EMBO J. 2004;23(9):1977–1986.
  • Sasakawa H, Sakata E, Yamaguchi Y, et al. Solution structure and dynamics of Ufm1, a ubiquitin-fold modifier 1. Biochem Biophys Res Commun. 2006;343(1):21–26.
  • Hagai T, Levy Y. Ubiquitin not only serves as a tag but also assists degradation by inducing protein unfolding. Proc Natl Acad Sci USA. 2010;107(5):2001–2006.
  • Xia ZL, Liu QJ, Wu JY, et al. ZmRFP1, the putative ortholog of SDIR1, encodes a RING-H2 E3 ubiquitin ligase and responds to drought stress in an ABA-dependent manner in maize. Gene. 2012;495(2):146–153.
  • Farooq M, Wahid A, Kobayashi N, et al. Plant drought stress: effects, mechanisms and management. Agron Sustain Dev. 2009;29(1):185–212.
  • Saracco SA, Miller MJ, Kurepa J, et al. Genetic analysis of SUMOylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential. Plant Physiol. 2007;145(1):119–134.
  • Nigam N, Singh A, Sahi C, et al. SUMO-conjugating enzyme (Sce) and FK506-binding protein (FKBP) encoding rice (Oryza sativa L.) genes: genome-wide analysis, expression studies and evidence for their involvement in abiotic stress response. Mol Genet Genomics. 2008;279(4):371–383.
  • Mazur MJ, Van DB, Harrold A. Global SUMO proteome responses guide gene regulation, mRNA biogenesis, and plant stress responses. Front Plant Sci. 2012;3:215.
  • Zhao Y, Wang Y, Yang H, et al. Quantitative proteomic analyses identify aba-related proteins and signal pathways in maize leaves under drought conditions. Front Plant Sci. 2016;7:1827–1823.
  • Ritossa F. A new puffing pattern induced by temperature shock and DNP in drosophila. Experimental. 1962;18(12):571–573.
  • Matz JM, Blake MJ, Tatelman HM, et al. Characterization and regulation of cold-induced heat shock protein expression in mouse brown adipose tissue. Am J Physiol. 1995;269(1 Pt 2):R38–47.
  • Cao Y, Ohwatari N, Matsumoto T, et al. TGF-beta1 mediates 70-kDa heat shock protein induction due to ultraviolet irradiation in human skin fibroblasts. Pflugers Arch. 1999;438(3):239–244.
  • Laplante AF, Moulin V, Auger FA, et al. Expression of heat shock proteins in mouse skin during wound healing. J Histochem Cytochem. 1998;46(11):1291–1301.
  • Santoro MG. Heat shock factors and the control of the stress response. Biochem Pharmacol. 2000;59(1):55–63.
  • Wong HR. Heat shock proteins. Facts, thoughts, and dreams. A. De Maio. Shock 11:1-12, 1999. Shock. 1999;12(4):323–325.
  • Cuimei Z, Shangli S. Physiological and proteomic responses of contrasting alfalfa (Medicago sativa L.) varieties to PEG-induced osmotic stress. Front Plant Sci. 2018;9:242.
  • Walter S, Buchner J. Molecular chaperones–cellular machines for protein folding. Angew Chem Int Ed. 2002;41(7):1098–1113.
  • Júlio CB, Carlos HIR. Protein folding assisted by chaperones. Protein Peptide Lett. 2005;12:257–261.
  • Wang W, Vinocur B, Shoseyov O, et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 2004;9(5):244–252.
  • Ma QL, Kang JM, Long RC, et al. Proteomic analysis of salt and osmotic-drought stress in alfalfa seedlings. J Integr Agric. 2016;15(10):2266–2278.
  • Rathore RS, Garg N, Garg S, et al. Starch phosphorylase: role in starch metabolism and biotechnological applications. Crit Rev Biotechnol. 2009;29(3):214–224.
  • Ahmadi A, Baker DA. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regulation. 2001;35(1):81–91.
  • Yang JC, Zhang JH, Wang ZQ, et al. Activities of starch hydrolytic enzymes and sucrose-phosphate synthase in the stems of rice subjected to water stress during grain filling. J Exp Bot. 2001;52(364):2169–2179.
  • Prasch CM, Ott KV, Bauer H, et al. ß-amylase1 mutant arabidopsis plants show improved drought tolerance due to reduced starch breakdown in guard cells. J Exp Bot. 2015;66(19):6059–6067.
  • Lee JB, Hite RK, Hamdan SM, et al. DNA primase acts as a molecular brake in DNA replication. Nature. 2006;439(7076):621–624.
  • Cavanaugh NA, Kuchta RD. Initiation of new DNA strands by the herpes simplex virus-1 primase-helicase complex and either herpes DNA polymerase or human DNA polymerase alpha. J Biol Chem. 2009;284(3):1523–1532.
  • Keck JL, Berger JM. Primus inter pares (first among equals). Nat Struct Biol. 2001;8(1):2–4.
  • Gupta S, Agarwal VP, Gupta NK. Efficacy of putrescine and benzyladenine on photosynthesis and productivity in relation to drought tolerance in wheat (Triticum aestivum L.). Physiol Mol Biol Plants. 2012;18(4):331–336.
  • Marini F, Pellicioli A, Paciotti V, et al. A role for DNA primase in coupling DNA replication to DNA damage response. EMBO J. 1997;16(3):639–650.
  • Faria JMR, Buitink J, Van L, et al. Changes in DNA and microtubules during loss and re-establishment of desiccation tolerance in germinating Medicago truncatula seeds. J Exp Bot. 2005;56(418):2119–2130.
  • Kim SJ, Hong SM, Yoo SJ, et al. Post-translational regulation of flowering locus t protein in Arabidopsis. Mol Plant. 2016;9(2):308–311.
  • Notaguchi M, Daimon Y, Abe M, et al. Long-distance, graft-transmissible action of arabidopsis flowering locus t protein to promote flowering. Plant Cell Physiol. 2008;49(11):1645–1658.
  • Yan YY, Shen LS, Chen Y, et al. A MYB-domain protein EFM mediates flowering responses to environmental cues in Arabidopsis. Dev Cell. 2014;30(4):437–448.
  • Riboni M, Galbiati M, Tonelli C, et al. Gigantea enables drought escape response via abscisic acid-dependent activation of the florigens and suppressor of overexpression of constans1. Plant Physiol. 2013;162(3):1706–1719.
  • Su Z, Ma X, Guo H, et al. Flower development under drought stress: morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis. Plant Cell. 2013;25(10):3785–3807.
  • Gunning BES, Steer MW. Plant cell biology structure and function. J Microsc. 1996;189:100–101.
  • Sanchez-Monge R, Lopez-Torrejón G, Pascual CY, et al. Vicilin and convicilin are potential major allergens from pea. Clin Exp Allergy. 2004;34(11):1747–1753.
  • Lycett GW, Delauney AJ, Gatehouse JA, et al. The vicilin gene family of pea (Pisum sativum L.): a complete cdna coding sequence for preprovicilin. Nucleic Acids Res. 1983;11(8):2367–2380.
  • Belanger FC, Kriz AL. Molecular-basis for allelic polymorphism of the maize globulin-1 gene. Genetics. 1991;129(3):863–872.
  • Amor Y, Haigler CH, Johnson S, et al. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc Natl Acad Sci USA. 1995;92(20):9353–9357.
  • González EM, Gordon AJ, James CL, et al. The role of sucrose synthase in the response of soybean nodules to drought. J Exp Bot. 1995;46(10):1515–1523.
  • Zheng Y, Anderson S, Zhang Y, et al. The structure of sucrose synthase-1 from Arabidopsis thaliana and its functional implications. J Biol Chem. 2011;286(41):36108–36118.
  • Jensen AB, Goday A, Figueras M, et al. Phosphorylation mediates the nuclear targeting of the maize rab17 protein. Plant J. 1998;13(5):691–697.
  • Riera M, Figueras M, Lopez C, et al. Protein kinase ck2 modulates developmental functions of the abscisic acid responsive protein rab17 from maize. Proc Natl Acad Sci USA. 2004;101(26):9879–9884.
  • Goday A, Jensen AB, Culiáñez-Macià FA, et al. The maize abscisic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals. Plant Cell. 1994;6(3):351–360.
  • Vilardell J, Goday A, Freire MA, et al. Gene sequence, developmental expression, and protein phosphorylation of rab-17 in maize. Plant Mol Biol. 1990;14(3):423–432.
  • Figueras M, Pujal J, Saleh A, et al. Maize rab17 overexpression in arabidopsis plants promotes osmotic stress tolerance. Ann Applied Biol. 2004;144(3):251–257.
  • Yang CQ, Liu RX, Yang FQ, et al. Effects of drought on the sucrose metabolism of subtending leaves of cotton bolls at different fruiting branches and boll weight during flowering and bolling stages. Cotton Sci. 2014;26:452–458.
  • Wardlaw IF. Interaction between drought and chronic high temperature during kernel filling in wheat in a controlled environment. Ann Bot. 2002;90(4):469–476.