499
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Potential biological mechanisms underlying the endangered status of Glehnia littoralis revealed by nrDNA ITS and RAPD analyses

, , , &
Pages 1243-1251 | Received 31 May 2020, Accepted 27 Sep 2020, Published online: 19 Oct 2020

References

  • Mathias ME. Studies in the Umbelliferae I. Ann Mo Bot Gard. 1928;15(1):91–109.
  • Shan RH, She ML. Flora of China. vol. 55. Beijing (China): Science Press; 1992.
  • Yang HX, Chu JM, Liu XS. Natural persistence of the coastal plant Glehnia littoralis along temperate sandy coasts. Sci Rep. 2017;7(1):7.
  • Yoon T, Cheon MS, Lee AY, et al. Anti-inflammatory activity of methylene chloride fraction from Glehnia littoralis extract via suppression of NF-kappa B and mitogen-activated protein kinase activity. J. Pharmacol. Sci. 2010;112(1):46–55.
  • Li L, Li MM, Qi XW, et al. De novo transcriptome sequencing and analysis of genes related to salt stress response in Glehnia littoralis. PeerJ. 2018;6(9):e5681.
  • Fu LG. Red book of Chinese plants - rare and endangered plants I. Beijing, China: Science Press; 1992.
  • Brekke P, Bennett PM, Santure AW, et al. High genetic diversity in the remnant island population of hihi and the genetic consequences of re-introduction. Mol Ecol. 2011;20(1):29–45.
  • Spielman D, Brook BW, Frankham R. Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci USA. 2004;101(42):15261–15264.
  • Wróblewska A, Brzosko E, Czarnecka B, et al. High levels of genetic diversity in populations of Iris aphylla L. (Iridaceae), an endangered species in Poland. Bot J Linn Soc. 2003;142(1):65–72.
  • Ellis JR, Pashley CH, Burke JM, et al. High genetic diversity in a rare and endangered sunflower as compared to a common congener. Mol. Ecol. 2006;15(9):2345–2355.
  • Wu FQ, Shen SK, Zhang XJ, et al. Genetic diversity and population structure of an extremely endangered species: the world’s largest Rhododendron. Aob Plants. 2015;7:plu082.
  • Lee SR, Choi JE, Lee BY, et al. Genetic diversity and structure of an endangered medicinal herb: implications for conservation. AoB PLANTS. 2018 ;10(2):ply021.
  • Singh SK, Meghwal PR, Pathak R, et al. Genetic diversity in Punica granatum revealed by nuclear rRNA, internal transcribed spacer and RAPD polymorphism. Natl Acad Sci Lett. 2013;36(2):115–124.
  • Kakani RK, Singh SK, Pancholy A, et al. Assessment of genetic diversity in Trigonella foenum-graecum based on nuclear ribosomal DNA, internal transcribed spacer and RAPD analysis. Plant Mol Biol Rep. 2011;29(2):315–323.
  • Ramaiya SD, Bujang JS, Zakaria MH. Genetic diversity in Passiflora species assessed by morphological and ITS sequence analysis. Sci World J. 2014;2014:598313. [2020-04-18];
  • Huang DQ, Li QQ, Zhou CJ, et al. Intraspecific differentiation of Allium wallichii (Amaryllidaceae) inferred from chloroplast DNA and internal transcribed spacer fragments. J Sytematics Evol. 2014;52(3):341–354.
  • Wang P, Lu YL, Zheng MM, et al. RAPD and internal transcribed spacer sequence analyses reveal Zea nicaraguensis as a section Luxuriantes species close to Zea luxurians. PLoS One. 2011;6(4):e16728. [2020-04-18];
  • Zhao LL, Feng SJ, Tian JY, et al. Internal transcribed spacer 2 (ITS2) barcodes: a useful tool for identifying Chinese Zanthoxylum. Appl Plant Sci. 2018;6(6):e01157.
  • Shiran B, Kiani S, Sehgal D, et al. Internal transcribed spacer sequences of nuclear ribosomal DNA resolving complex taxonomic history in the genus Vicia L. Genet Resour Crop Evol. 2014;61(5):909–925.
  • Filyushin MA, Reshetnikova NM, Kochieva EZ, et al. Intraspecific variability of ITS sequences in the parasitic plant Monotropa hypopitys L. from the European Russian populations. Russ J Genet. 2015;51(11):1149–1152.
  • Xiao LQ, Zhu H. Incomplete nrDNA ITS concerted evolution in plants and its evolutionary implications. Acta Bot Bor-Occid Sin. 2009;29(8):1708–1713.
  • Xiao LQ, Möller M, Zhu H. High nrDNA ITS polymorphism in the ancient extant seed plant Cycas: Incomplete concerted evolution and the origin of pseudogenes. Mol. Phylogenet. Evol. 2010;55(1):168–177.
  • Williams JGK, Kubelik AR, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990;18(22):6531–6535.
  • Nybom H, Bartish I. Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol Evol Syst. 2000;3(2):93–114.
  • Ikbal BK, Dhillon RS. Evolution of genetic diversity in Jatropha curcas L. using RAPD markers. Indian J Biotech. 2010;9:50–57.
  • Nosrati H, Hosseinpour-Feizi M, Nikniazi M, et al. Genetic variation among different accessions of Lathyrus sativus (Fabaceae) revealed by RAPDs. Bot Serbica. 2012;36:41–4728.
  • Cao QJ, Lu BR, Xia H, et al. Genetic diversity and origin of weedy Rice (Oryza sativa f. spontanea) populations found in northeastern China revealed by Simple Sequence Repeat (SSR) markers. Ann Bot. 2006;98:1241–1252.
  • Sun Y, Liu YF, Huang HW. Isolation and characterization of polymorphic microsatellite markers in Schisandra chinensis (Turcz.) Baill. (Schisandraceae). Conserv Genet Resour. 2009;1(1):119–121.
  • Matsuda J, Setoguchi H. Isolation and characterization of microsatellite loci in Asarum leucosepalum (Aristolochiaceae), an endangered plant endemic to Okunoshima Island in the Ryukyu Archipelago. Conserv Genet Resour. 2012;4(3):579–581.
  • Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995;23(21):4407–4414.
  • Krauss SL. Accurate gene diversity estimates from amplified fragment length polymorphism (AFLP) markers. Mol Ecol. 2000;9:1241–1245.
  • Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochem Bull. 1987;19:11–15.
  • White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols a guide to methods and applications. San Diego (CA): Academic Press; 1990:315–322.
  • Sudhir K, Glen S, Koichiro T. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):msw054.
  • Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25(11):1451–1452.
  • Pons O, Petit RJ. Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics. 1996;144:1237–1245.
  • Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol Bioinform Online. 2005;1:117693430500100–117693430500150.
  • Bandelt HJ, Forster P, Rohl L. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999;16:37–48.
  • Tavaré S. Coalescent theory. Hoboken (NJ): John Wiley & Sons, Ltd; 2006.
  • Raymond M, Rousset F. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered. 1995;86(3):248–249.
  • Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA. 1973;70:3321–3323.
  • Lewontin RC. The apportionment of human diversity. Evol Biol. 1972;6(38):1–398.
  • Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. Seattle: Department of Genome Sciences, University of Washington. 2005.
  • Nei M. Genetic distance between populations. Am Nat. 1972;106(949):283–292.
  • Harpke D, Peterso NA. Non-concerted ITS evolution in Mammillaria (Cactaceae). Mol Phylogenet Evol. 2006;41(3):579–593.
  • He YH. Bioinformatic analysis of the Elaeagnaceae nrDNA ITS sequences [dissertation]. Lanzhou: Northwest Normal University; 2012.
  • Kimura M, Crow JF. The number of alleles that can be maintained in a finite population. Genetics. 1964;73:19–35.
  • Hamrick JL, Godt MW. Effects of life history traits on genetic diversity in plant species. Phil Trans Roy Soc London Ser B Biol Sci. 1996;351:1291–1298.
  • Nybom H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol. 2004;13:1143–1155.
  • Feng X, Wang Y, Gong X. Genetic diversity, genetic structure and demographic history of Cycas simplicipinna (Cycadaceae) assessed by DNA sequences and SSR markers. BMC Plant Biol. 2014;14:187.
  • Wang AL, Wang GL, Li WW. Genetic diversity of Glehnia littiralis populations revealed by ISSR molecular markers. Acta Bot Bor-Occid Sin. 2015;35(8):1541–1546.
  • Li B, Wang AL, Zhang P, et al. Genetic diversity and population structure of endangered Glehnia littoralis (Apiaceae) in China based on AFLP analysis. Biotechnol Biotechnol Equip. 2019;33(1):331–337.
  • Wang AL, Zhang P, Liu X, et al. Genetic structure and diversity of Glehnia littoralis, an endangered medicinal plant in China. Biochem Syst Ecol. 2016;66:265–271.
  • Huh M, Choi J, Huh H, et al. Genetic diversity and population structure of Glehnia littoralis (umbelliferae) in Korea. J Physiol Pathol Korean Med. 2003;17:1519–1523.
  • Hui H, Liu QX, Liu MH. Allozyme variation and genetic diversity of Glehnia littoralis populations at the middle of seaboard in China. J Plant Resour Environ. 2001;10:1–6.
  • Zou XH, Ge S. Conflicting gene trees and phylogenomics. J Syst Evol. 2008;46(6):795–807.
  • Avise JC, Hamrick JL. Conservation genetics: case histories from nature. New York (NY): Chapman & Hall; 1996.
  • Chen FJ, Wang AL, Chen KM, et al. Genetic diversity and population structure of the endangered and medically important Rheum tanguticum (Polygonaceae) revealed by SSR Markers. Biochem Syst Ecol. 2009;37(5):613–621.
  • Song CF, Wu BC, Hu J, et al. Existence status of Glehnia littoralis and causes of extinction in Jiangsu Province. Chin Wild Plant Resour. 2013;32(4):56–57. 69.
  • Pan Y, Chu J, Yang H. Conservation choice on the rare endangered plants Glehnia littoralis. Conserv Physiol. 2018 ;6(1):coy002. [2020-04-18]