1,655
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Bulked QTL-Seq identified a major QTL for the awnless trait in spring wheat cultivars in Qinghai, China

, , , , , & show all
Pages 124-130 | Received 11 Sep 2020, Accepted 25 Nov 2020, Published online: 10 Dec 2020

References

  • Maydup ML, Antonietta M, Guiamet JJ, et al. The contribution of ear photosynthesis to grain filling in bread wheat (Triticumaestivum L.). Field Crop Res. 2010;119(1):48–58.
  • Rebetzke GJ, Bonnett DG, Reynolds MP. Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat. J Exp Bot. 2016;67(9):2573–2586.
  • Wu Q, Chen Y, Fu L, et al. QTL mapping of flag leaf traits in common wheat using an integrated high-density SSR and SNP genetic linkage map. Euphytica. 2016;208(2):337–351.
  • Li XJ, Wang HG, Li HB, et al. Awns play a dominant role in carbohydrate production during the grain-filling stages in wheat (Triticumaestivum L.). Physiol Plant. 2006;127(4):701–709.
  • Kosuge K, Watanabe N, Kuboyama T, et al. Cytological and microsatellite mapping of mutant genes for spherical grain and compact spikes in durum wheat. Euphytica. 2008;159(3):289–296.
  • Abebe T, Wise RP, Skadsen RW. Comparative transcriptional profiling established the awn as the major photosynthetic organ of the Barley spike while the lemma and the paleaprimarily protect the seed. Plant Genome. 2009;2(3):247–259.
  • Elbaum R, Zaltzman L, Burgert I, et al. The role of wheat awns in the seed dispersal unit. Science. 2007;316(5826):884–886.
  • Li XF, Du B, Wang HG. Awn anatomy of common wheat (Triticum aestivum L.) and its relatives. Caryologia. 2010;63(4):391–397.
  • McIntosh RA. Catalogue of gene symbols for wheat. 12th International wheat genetics symposium, Yokohama 2013. pp. 6–7.
  • McIntosh RA, Hart GE, Devos KM, et al. Catalogue of gene symbols for wheat. Proc 9th Int Wheat Genet Symp. Saskatoon. 1998; 5:235.
  • Sourdille P, Cadalen T, Gay G, et al. Molecular and physical mapping of genes affecting awning in wheat. Plant Breed . 2002;121(4):320–324.
  • Yoshioka M, Iehisa JCM, Ohno R, et al. Three dominant awnless genes in common wheat: fine mapping, interaction and contribution to diversity in awn shape and length. Plos One. 2017;12(4):e0176148
  • Zhang YP, Zhang ZY, Sun XM, et al. Natural alleles of GLA for grain length and awn development were differently domesticated in rice subspecies japonica and indica. Plant Biotechnol J. 2019;17(8):1547–1559.
  • Wang DZ, Yu K, Jin D, et al. Natural variations in the promoter of awn length inhibitor 1 (ALI-1) are associated with awn elongation and grain length in common wheat. Plant J. 2020;101(5):1075–1090.
  • Huang DQ, Zheng Q, Melchkart T, et al. Dominant inhibition of awn development by a putative zinc-finger transcriptional repressor expressed at the B1 locus in wheat. New Phytol. 2020;225(1):340–355.
  • Dewitt N, Guedira M, Lauer E, et al. Sequence-based mapping identifies a candidate transcription repressor underlying awn suppression at the B1 locus in wheat. New Phytol. 2020;225(1):326–339.
  • Li H, Han YC, Guo XX, Xue F, et al. Genetic effect of locus B2 inhibiting awning in double-ditelosomic 6B of Triticum durum DR147. Genet Resour Crop Evol. 2015;62(3):407–418.
  • Luo JH, Liu H, Zhou TY, et al. An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell. 2013;25(9):3360–3376.
  • Prokopik DO, Ternovs’ka TK. SSR marking of genes used for control of beardedness in Durum wheat (Triticum durum Desf). Visn. Ukr. Tovar. Genet. Selekts. 2010; 8:31–40.
  • Korzun V, Röder MS, Worland AJ, et al. Intrachromosomal mapping of genes for dwarfing (Rht12) and vernalization response (Vrn1) in wheat using RFLP and microsatellite markers. Plant Breed. 1997;116(3):227–232.
  • Haque MA, Takayama A, Watanabe N, et al. Cytological and genetic mapping of the gene for four-awned phenotype in TriticumcarthlicumNevski. Genet Resour Crop Evol. 2011;58(7):1087–1093.
  • Nishijima R, Ikeda TM, Takumi S. Genetic mapping reveals a dominant awn-inhibiting gene related to differentiation of the variety anathera in the wild diploid wheat Aegilops tauschii. Genetica. 2018;146(1):75–84.
  • Salunkhe AS, Poornima R, Prince KSJ, et al. Fine mapping QTL for drought resistance traits in Rice (Oryza sativa L.) using bulk segregant analysis. Mol Biotechnol. 2011;49(1):90–95.
  • Takagi H, Abe A, Yoshida K, et al. QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 2013;74(1):174–183.
  • Kadambari G, Vemireddy LR, Srividhya A, et al. QTL-Seq-based genetic analysis identifies a major genomic region governing dwarfness in rice (Oryza sativa L.). Plant Cell Rep. 2018;37(4):677–687.
  • Clevenger J, Chu Y, Chavarro C, et al. Mapping late leaf spot resistance in Peanut (Arachishypogaea) using QTL-seq reveals markers for marker-assisted selection. Front Plant Sci. 2018; 9:83.
  • Chen Q, Song J, Du WP, et al. Identification and genetic mapping for Rht-DM, a dominant dwarfing gene in mutant semi-dwarf maize using QTL-seq approach. Genes Genomics. 2018;40(10):1091–1099.
  • Park M, Lee JH, Han K, et al. A major QTL and candidate genes for capsaicinoid biosynthesis in the pericarp of Capsicum chinense revealed using QTL-seq and RNA-seq. Theor Appl Genet. 2019;132(2):515–529.
  • Yuo T, Yamashita Y, Kanamori H, et al. A short internodes (SHI) family transcription factor gene regulates awn elongation and pistil morphology in barley. J Exp Bot. 2012;63(14):5223–5232.
  • Yan ZH, Wan YF, Liu KF, et al. Identification of a novel hmwglutenin subunit and comparison of its amino acid sequence with those of homologous subunits. Sci Bull. 2002; 47:222–226.
  • Poland JA, Brown PJ, Sorrells ME, et al. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PloS One. 2012;7(2):e32253
  • Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–1760.
  • Wang H, Wang XE, Chen PD, et al. Assessment of genetic diversity of Yunnan, Tibetan, and Xinjiang wheat using SSR markers. J Genet Genom. 2007;34(7):623–633.