4,393
Views
6
CrossRef citations to date
0
Altmetric
Review

Analytical detection methods for diagnosis of COVID-19: developed methods and their performance

ORCID Icon
Pages 196-207 | Received 04 Sep 2020, Accepted 14 Dec 2020, Published online: 27 Dec 2020

References

  • Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–733.
  • Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395(10223):514–523.
  • Coronaviridae Study Group of the International Committee on Taxonomy of V. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5:536–544.
  • Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 Novel Coronavirus in the United States. N Engl J Med. 2020;382(10):929–936.
  • Nowak JA, Kaul KL. The role of community molecular diagnostics laboratories in the H1N1 pandemic. J Mol Diagn. 2009;11(5):369–370.
  • Giri B, Pandey S, Shrestha R, et al. Review of analytical performance of COVID-19 detection methods. Anal Bioanalyt Chem. 2020;413(1):1–14.
  • Böger B, Fachi MM, Vilhena RO, et al. Systematic review with meta-analysis of the accuracy of diagnostic tests for COVID-19. Am J Infect Control. 2020:1–9.
  • Li C, Zhao C, Bao J, et al. Laboratory diagnosis of coronavirus disease-2019 (COVID-19). Clin Chim Acta. 2020;510(2020):35–46.
  • Liotti FM, Menchinelli G, Lalle E, et al. Performance of a novel diagnostic assay for rapid SARS-CoV-2 antigen detection in nasopharynx samples. Clin Microbiol Infect. 2020:1–2.
  • Pizzol JLD, Hora VPD, Reis AJ, et al. Laboratory diagnosis for Covid-19: a mini-review. Rev Soc Bras Med Trop. 2020;53: 1–6.
  • Bastos ML, Tavaziva G, Abidi SK, et al. Diagnostic accuracy of serological tests for COVID-19: systematic review and meta-analysis. BMJ. 2020;370: 1–13.
  • Grassly NC, Pons-Salort M, Parker EP, et al. Comparison of molecular testing strategies for COVID-19 control: a mathematical modelling study. Lancet Infect Dis. 2020;20(12):1381–1389.
  • Li N, Wang P, Wang X, et al. Molecular diagnosis of COVID-19: current situation and trend in China. Exp Ther Med. 2020;20(5):1.
  • Vandenberg O, Martiny D, Rochas O, et al. Considerations for diagnostic COVID-19 tests. Nat Rev Microbiol. 2020;19:1–13.
  • Mahapatra S, Chandra P. Clinically practiced and commercially viable nanobio engineered analytical methods for COVID-19 diagnosis. Biosens Bioelectron. 2020;165(2020):112361.
  • La Rosa G, Muscillo M. Molecular detection of viruses in water and sewage. In: Viruses in food and water: risks, surveillance and control. Cambridge, UK: Woodhead Publishing Limited, 2013. p. 97–125.
  • Sinclair RG, Choi CY, Riley MR, et al. Pathogen surveillance through monitoring of sewer systems. Adv Appl Microbiol. 2008;65:249–269.
  • Daughton CG. Monitoring wastewater for assessing community health: sewage chemical-information mining (SCIM). Sci Total Environ. 2018;619–620:748–764.
  • Xagoraraki I, O’Brien E. Wastewater-based epidemiology for early detection of viral outbreaks. In: O’Bannon D, editor. Women in water quality. Women Engineering and Science. Cham: Springer; 2020. p. 75–97.
  • Chen Y, Chen L, Deng Q, et al. The presence of SARS-CoV- 2 RNA in feces of COVID-19 patients. J Med Virol. 2020;92:833–840.
  • Lo IL, Lio CF, Cheong HH, et al. Evaluation of SARS-CoV-2 RNA shedding in clinical specimens and clinical characteristics of 10 patients with COVID-19 in Macau. Int J Biol Sci. 2020;16(10):1698–1707.
  • Lescure FX, Bouadma L, Nguyen D, et al. Clinical and virological data of the first cases of COVID-19 in Europe: a case series. Lancet Infect Dis. 2020;20(6):697–706.
  • Han MS, Seong M-W, Heo EY, et al. Sequential analysis of viral load in a neonate and her mother infected with severe acute respiratory syndrome coronavirus 2. Clin Infect Dis. 2020;71(16):2236–2239.
  • Li Y, Yao L, Li J, et al. Stability issues of RT-PCR testing of SARS-CoV-2 for hospitalized patients clinically diagnosed with COVID-19. J Med Virol. 2020;92(7):903–908.
  • Li Z, Yi Y, Luo X, et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J Med Virol. 2020;92(9):1518–1524.
  • Haveri A, Smura T, Kuivanen S, et al. Serological and molecular findings during SARS-CoV-2 infection: the first case study in Finland. Bull Eur Sur Mal Transm Eur Commun Dis Bull. 2020;25(11):2000266.
  • Siddra I, Imran U. Recombination DNA technology. UK: Cambridge Scholars Publishing; 2019.
  • Heid CA, Stevens J, Livak KJ, et al. Real time quantitative PCR. Genome Res. 1996;6(10):986–994.
  • Aroca A, Raposo R, Lunello P. A biomarker for the identification of four Phaeoacremonium species using the beta-tubulin gene as the target sequence. Appl Microbiol Biotechnol. 2008;80(6):1131–1140.
  • Bilodeau GJ, Pelletier G, Pelletier F, et al. Multiplex real-time polymerase chain reaction (PCR) for detection of Phytophthora ramorum, the causal agent of sudden oak death. Canad J Plant Pathol. 2009;31(2):195–210.
  • Cumagun CJ, editor. Plant pathology. UK: IntechOpen; 2012.
  • Carter LJ, Garner LV, Smoot JW, et al. Assay techniques and test development for COVID-19 diagnosis. ACS Cent Sci. 2020;6(5):591–605.
  • American College of Physicians. COVID-19 found in sputum and feces samples after pharyngeal specimens no longer positive. Science Daily. 2020 Mar 30. Available from: https://sciencedaily.com/releases/2020/03/200330110348.htm
  • Kujawski SA, Wong KK, Collins JP, et al. Clinical and virologic characteristics of the first 12 patients with coronavirus disease (COVID-19) in the United States. Nat Med. 2020;26:861–868.
  • Rutgers University. New Rutgers saliva test for coronavirus gets FDA approval: emergency use authorization granted for new biomaterial collection approach. Rutgers Today. April 2020. Available from: http://www.rutgers.edu/news/new-rutgers-saliva-test-coronavirus-gets-fdaapproval
  • U.S. Food & Drug Administration. Accelerated emergency use authorization (EUA) summary SARS-CoV-2 ASSAY (Rutgers Clinical Genomics Laboratory). FDA, US; 2020. p. 1–8.
  • VanGuilde HD, Vrana KE, Freeman WM. Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques. 2008;44(5):619–626.
  • Wong ML, Medrano JF. Real-time PCR for mRNA quantitation. Biotechniques. 2005;39(1):75–85.
  • Jared R, Sugeet J, Jason R, et al. Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is comparable in clinical samples preserved in saline or viral transport medium. J Mol Diagn. 2020;22(7):871–875.
  • Leland DS. Concepts of clinical diagnostic virology. In: Laboratory diagnosis of viral infections. 2nd ed. New York, NY: Marcel Dekker, Inc.; 1992. p. 3–44.
  • Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):E63–E67.
  • Huang WE, Lim B, Hsu C-C, et al. RT-LAMP for rapid diagnosis of coronavirus SARS-CoV-2. Microb Biotechnol. 2020;13(4):950–961.
  • McGovern Institute, What is CRISPR? Ask the Brain. The McGovern Institute for Brain Research, Massachusetts Institute of Technology. 2019 Jan 1. Available from: http://mcgovern.mit.edu/2019/01/01/crispr-in-a-nutshell/
  • Serology-based tests for COVID-19. Johns Hopkins Center for Health Security. 2020. Available from: http://www.centerforhealthsecurity.org/resources/COVID-19/serology/Serology-based-tests-for-COVID-19.html
  • Pryor J. 3 Questions: How COVID-19 tests work and why they’re in short supply. MIT News: On Campus and around the World. Massachusetts Institute of Technology. 2020 Apr 10. Available from: http://news.mit.edu/2020/how-covid-19-tests-work-why-they-are-in-short-supply-0410
  • Broughton JP, Deng X, Yu G, et al. CRISPR–Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 2020;38(7):870–874.
  • Ali Z, Aman R, Mahas A, et al. iSCAN: an RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2. Virus Res. 2020;288:198129.
  • La Marca A, Capuzzo M, Paglia T, et al. Testing for SARS-CoV-2 (COVID-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. Reprod Biomed Online. 2020;41(3):483–499.
  • Loeffelholz MJ, Tang Y-W. Laboratory diagnosis of emerging human coronavirus infections - the state of the art. Emerg Microbes Infect. 2020;9(1):747–756.
  • Udugama B, Kadhiresan P, Kozlowski HN, et al. Diagnosing COVID-19: the disease and tools for detection. ACS Nano. 2020;14(4):3822–3835.
  • Zou L, Ruan F, Huang M, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020;382(12):1177–1179.
  • Serology testing for COVID-19. Johns Hopkins Center for Health Security. 2020. Available from: http://https://www.centerforhealthsecurity.org/resources/COVID-19/COVID-19-fact-sheets/200228-Serology-testing-COVID
  • FDA Fact Sheet: Serological testing for antibodies to SARSCoV- 2 infection. U.S. Food & Drug Administration; 2020. p. 1−2. Available from: http://www.fda.gov/media/137111/download
  • Imai K, Tabata S, Ikeda M, et al. Clinical evaluation of an immunochromatographic IgM/IgG antibody assay and chest computed tomography for the diagnosis of COVID-19. J Clin Virol. 2020;128:104393
  • Chen Z, Zhang Z, Zhai X, et al. Rapid and sensitive detection of anti-SARS-CoV-2 IgG, using lanthanide-doped nanoparticles-based lateral flow immunoassay. Anal Chem. 2020;92(10):7226–7231.
  • Wan ZY, Zhang X, Yan XG. IFA in testing specific antibody of SARS coronavirus. South China J Prev Med. 2003;29:36–37.
  • Che X, Di B, Zhao G, et al. A patient with asymptomatic severe acute respiratory syndrome (SARS) and antigenemia from the 2003-2004 community outbreak of SARS in Guangzhou, China. Clin Infect Dis. 2006;43:1–5.
  • Zhang G, Nie S, Zhang Z, et al. Longitudinal change of SARS-Cov2 antibodies in patients with COVID-19. J Infect Dis. 2020;2:229.
  • Barbosa Junior WL, Ramos de Araujo PS, Dias de Andrade L, et al. Rapid tests and the diagnosis of visceral leishmaniasis and human immunodeficiency virus/acquired immunodeficiency syndrome coinfection. Am J Trop Med Hyg. 2015;93(5):967–969.
  • Feng M, Chen J, Xun J, et al. Development of a sensitive immunochromatographic method using lanthanide fluorescent microsphere for rapid serodiagnosis of COVID-19. ACS Sens. 2020;5(8):2331–2337.
  • Uhteg K, Jarrett J, Richards M, et al. Comparing the analytical performance of three SARS-CoV-2 molecular diagnostic assays. J Clin Virol. 2020;127:104384.
  • Schmitz JE, Tang YW. The GenMark ePlex®: another weapon in the syndromic arsenal for infection diagnosis. Fut Microbiol. 2018;13:1697–1708.
  • Demey B, Daher N, François C, et al. Dynamic profile for the detection of anti-SARS-CoV-2 antibodies using four immunochromatographic assays. J Infect. 2020;81(2):e6–e10.
  • Zuo J-Y, Jiao Y-J, Zhu J, et al. Rapid detection of severe fever with thrombocytopenia syndrome virus via colloidal gold immunochromatography assay. ACS Omega. 2018;3(11):15399–15406.
  • Ge X, Zhang W, Lin Y, et al. Magnetic Fe3O4@TiO2 nanoparticles-based test strip immunosensing device for rapid detection of phosphorylated butyrylcholinesterase. Biosens Bioelectron. 2013;50:486–491.
  • Huang C, Wei Q, Hu Q, et al. Rapid detection of severe fever with thrombocytopenia syndrome virus (SFTSV) total antibodies by up-converting phosphor technology-based lateral-flow assay. Luminescence. 2019;34(2):162–167.
  • Lu T, Zhu K-D, Huang C, et al. Rapid detection of Shiga Toxin type II using lateral flow immunochromatography test strips of colorimetry and fluorimetry. Analyst. 2019;145(1):76–82.
  • Song C, Liu J, Li J, et al. Dual FITC lateral flow immunoassay for sensitive detection of Escherichia coli O157:H7 in food samples. Biosens Bioelectron. 2016;85:734–739.
  • Huang C, Wen T, Shi F-J, et al. Rapid detection of IgM antibodies against the SARS-CoV-2 virus via colloidal gold nanoparticle-based lateral-flow assay. ACS Omega. 2020;5(21):12550–12556.
  • Posthuma-Trumpie GA, Korf J, van Amerongen A. Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem. 2009;393(2):569–582.
  • Koczula KM, Gallotta A. Lateral flow assays. Essays Biochem. 2016;60(1):111–120.
  • Carrio A, Sampedro C, Sanchez-Lopez J, et al. Automated low-cost smartphone-based lateral flow saliva test reader for drugs-of-abuse detection. Sensors (Basel). 2015;15(11):29569–29593.
  • Brangel P, Sobarzo A, Parolo C, et al. A serological point-of-care test for the detection of IgG antibodies against Ebola virus in human survivors. ACS Nano. 2018;12(1):63–73.
  • Pan D, Schirra CO, Wickline SA, et al. Multicolor computed tomographic molecular imaging with noncrystalline high-metal-density nanobeacons. Contrast Media Mol Imaging. 2014;9(1):13–25.
  • Pan D, Pramanik M, Senpan A, et al. Molecular photoacoustic tomography with colloidal nanobeacons. Angew Chem Int Ed Engl. 2009;48(23):4170–4173.
  • Pan D, Pramanik M, Senpan A, et al. Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons. Biomaterials. 2010;31(14):4088–4093.
  • Pan D, Pramanik M, Senpan A, et al. A facile synthesis of novel self-assembled gold nanorods designed for near-infrared imaging. J Nanosci Nanotechnol. 2010;10(12):8118–8123.
  • Pan D, Pramanik M, Senpan A, et al. Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons. FASEB J. 2011;25(3):875–882.
  • Zeng J, Zhang Y, Zeng T, et al. Anisotropic plasmonic nanostructures for colorimetric sensing. Nano Today. 2020;32:100855.
  • Fraire JC, Perez LA, Coronado EA. Rational design of plasmonic nanostructures for biomolecular detection: interplay between theory and experiments. ACS Nano. 2012;6(4):3441–3452.
  • Saha K, Agasti SS, Kim C, et al. Gold nanoparticles in chemical and biological sensing. Chem Rev. 2012;112(5):2739–2779.
  • Misra SK, Dighe K, Schwartz-Duval AS, et al. In situ plasmonic generation in functional ionic-gold-nanogel scaffold for rapid quantitative bio-sensing. Biosens Bioelectron. 2018;120:77–84.
  • Li Z, Askim JR, Suslick KS. The optoelectronic nose: colorimetric and fluorometric sensor arrays. Chem Rev. 2019;119(1):231–292.
  • Curry T, Kopelman R, Shilo M, et al. Multifunctional theranostic gold nanoparticles for targeted CT imaging and photothermal therapy. Contrast Media Mol Imaging. 2014;9(1):53–61.
  • Peng L, Li BL, Zhou CW, et al. Naked-eye recognition: emerging gold nano-family for visual sensing. Appl Mater Today. 2018;11:166–188.
  • Mirkin CA, Letsinger RL, Mucic RC, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature. 1996;382(6592):607–609.
  • Elghanian R, Storhoff JJ, Mucic RC, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science. 1997;277(5329):1078–1081.
  • Jung YL, Jung C, Parab H, et al. Direct colorimetric diagnosis of pathogen infections by utilizing thiol-labeled PCR primers and unmodified gold nanoparticles. Biosens Bioelectron. 2010;25(8):1941–1946.
  • Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci USA. 2004;101(39):14036–14039.
  • Shokri E, Hosseini M, Davari MD, et al. Disulfide-induced self-assembled targets. A novel strategy for the label free colorimetric detection of DNAs/RNAs via unmodified gold nanoparticles. Sci Rep. 2017;7:1.
  • Moitra P, Alafeef M, Dighe K, et al. Dipanjan Pan selective naked-eye detection of SARS-CoV‑2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano. 2020;14(6):7617–7627. https://dx.doi.org/10.1021/acsnano.0c03822.