1,829
Views
3
CrossRef citations to date
0
Altmetric
Articles

Investigation of protein expression of Saccharomyces cerevisiae cells in quiescent and proliferating state before and after toxic stress

, , , , , & show all
Pages 366-376 | Received 18 Nov 2020, Accepted 18 Jan 2021, Published online: 02 Mar 2021

References

  • Hartwell L, Culotti J, Pringle J, et al. Genetic control of the cell division cycle in yeast. Science. 1974;183(4120):46–51.
  • Pringle JR, Hartwell LH. The Saccharomyces cerevisiae cell cycle. Cold Spring Harb Monogr Arch. 1981;11:97–142.
  • Kumar R, Srivastava S. Quantitative proteomic comparison of stationary/G0 phase cells and tetrads in budding yeast. Sci Rep. 2016;6:32031.
  • Werner-Washburne M, Braun E, Johnston GC, et al. Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev. 1993;57(2):383–401.
  • Longo VD, Gralla EB, Valentine JS. Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. J Biol Chem. 1996;271(21):12275–12280.
  • Galdieri L, Mehrotra S, Yu S, et al. Transcriptional regulation in yeast during diauxic shift and stationary phase. OMICS. 2010;14(6):629–638.
  • Harsch MJ, Lee SA, Goddard MR, et al. Optimized fermentation of grape juice by laboratory strains of Saccharomyces cerevisiae. FEMS Yeast Res. 2009;10(1):72–82.DOI: 10.1111/j.1567-1364.2009.00580.x
  • Allen C, Büttner S, Aragon AD, et al. Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures. J Cell Biol. 2006;174(1):89–100.
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–685.
  • Walker JM. SDS polyacrylamide gel electrophoresis of proteins. In: Walker JM, editors. The protein protocols handbook. Springer protocols handbooks. 3rd ed. Totowa (NJ): Humana Press; 2009. p. 61–67.
  • Gallagher SR. SDS-polyacrylamide gel electrophoresis. In: Gallagher SR, Wiley EA, editors. Current protocols essential laboratory techniques. Hoboken (NJ): Wiley; 2008. p. 290–314.
  • Rosenfeld J, Capdevielle J, Guillemot JC, et al. In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal Biochem. 1992;203(1):173–179.
  • Beavis RC, Chaudhary T, Chait BT. α‐Cyano‐4‐hydroxycinnamic acid as a matrix for matrixassisted laser desorption mass spectrometry. Org Mass Spectrom. 1992;27(2):156–158.
  • Chuang Y, Chen Y, Chandramouli V, et al. Gene expression after treatment with hydrogen peroxide, menadione, or t-butyl hydroperoxide in breast cancer cells. Cancer Res. 2002;62:6246–6254.
  • Werner‐Washburne M, Braun EL, Crawford ME, et al. Stationary phase in Saccharomyces cerevisiae. Mol Microbiol. 1996;19(6):1159–1166.
  • Cyrne L, Martins L, Fernandes LM, et al. Regulation of antioxidant enzymes gene expression in the yeast Saccharomyces cerevisiae during stationary phase. Free Radic Biol Med. 2003;34(3):385–393.
  • He C, Tsuchiyama SK, Nguyen QT, et al. Enhanced longevity by ibuprofen, conserved in multiple species, occurs in yeast through inhibition of tryptophan import. PLoS Genet. 2014;10(12):e1004860.
  • Dialynaki D, Fragiadakis G, Palikaras K, et al. The anti-cancer drug zeocin affects TORC1 pathway, mitochondrial function and autophagy, in S. cerevisiae. 12th Scientific FORTH Retreat, 2019 Oct 14–16; FORTH/ICE-HT, Patras, Greece.
  • Kobayashi T, Heck DJ, Nomura M, et al. Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev. 1998;12(24):3821–3830.
  • Katsuki J, Takashi H. The cis element and factors required for condensin recruitment to chromosomes. Mol Cell. 2009;34:26–35.
  • Dlakić M. A model of the replication fork blocking protein Fob1p based on the catalytic core domain of retroviral integrases. Protein Sci. 2002;11(5):1274–1277.
  • Xie Z, Zhang Y, Zou K, et al. Molecular phenotyping of aging in single yeast cells using a novel microfluidic device. Aging Cell. 2012;11(4):599–606.
  • Netz DJ, Stümpfig M, Doré C, et al. Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis. Nat Chem Biol. 2010;6(10):758–765.
  • Vernis L, Facca C, Delagoutte E, et al. A newly identified essential complex, Dre2-Tah18, controls mitochondria integrity and cell death after oxidative stress in yeast. PLoS One. 2009;4(2):e4376.
  • Nishimura A, Kawahara N, Takagi H. The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. Biochem Biophys Res Commun. 2013;430(1):137–143.
  • Jamieson DJ. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast. 1998;14(16):1511–1527.
  • Garcerá A, Barreto L, Piedrafita L, et al. Saccharomyces cerevisiae cells have three omega class glutathione S-transferases acting as 1-Cys thiol transferases. Biochem J. 2006;398(2):187–196.
  • Board PG, Coggan M, Chelvanayagam G, et al. Identification, characterization, and crystal structure of the omega class glutathione transferases. J Biol Chem. 2000;275(32):24798–24806.
  • Rouimi P, Anglade P, Benzekri A, et al. Purification and characterization of a glutathione S-transferase Omega in pig: evidence for two distinct organ-specific transcripts. Biochem J. 2001;358(Pt 1):257–262.
  • Girardini J, Amirante A, Zemzoumi K, et al. Characterization of an omega-class glutathione S-transferase from Schistosoma mansoni with glutaredoxin-like dehydroascorbate reductase and thiol transferase activities. Eur J Biochem. 2002;269(22):5512–5521.
  • Choi JH, Lou W, Vancura A. A novel membrane-bound glutathione S-transferase functions in the stationary phase of the yeast Saccharomyces cerevisiae. J Biol Chem. 1998;273(45):29915–29922.
  • Kim Y, Cha SJ, Choi HJ, et al. Omega class glutathione S-transferase: antioxidant enzyme in pathogenesis of neurodegenerative diseases. Oxid Med Cell Longev. 2017;2017:1–6.
  • Kathiresan M, Martins D, English AM. Respiration triggers heme transfer from cytochrome c peroxidase to catalase in yeast mitochondria. Proc Natl Acad Sci USA. 2014;111(49):17468–17473.
  • Martins D, Kathiresan M, English AM. Cytochrome c peroxidase is a mitochondrial heme-based H2O2 sensor that modulates antioxidant defense. Free Radic Biol Med. 2013;65:541–551.
  • Kwon M, Chong S, Han S, et al. Oxidative stresses elevate the expression of cytochrome c peroxidase in Saccharomyces cerevisiae. Biochim Biophys Acta. 2003;1623(1):1–5.
  • van der Klei IJ, Rytka J, Kunau WH, et al. Growth of catalase A and catalase T deficient mutant strains of Saccharomyces cerevisiae on ethanol and oleic acid. Arch Microbiol. 1990;153(5):513–517.
  • Petrova VY, Kujumdzieva AV. Robustness of Saccharomyces cerevisiae genome to antioxidative stress. Biotechnol Biotechnol Equip. 2010;24(sup1):474–483.
  • Petrova VY, Drescher D, Kujumdzieva AV, et al. Dual targeting of yeast catalase A to peroxisomes and mitochondria. Biochem J. 2004;380(Pt 2):393–400.
  • Delneri D, Gardner DC, Oliver SG. Analysis of the seven-member AAD gene set demonstrates that genetic redundancy in yeast may be more apparent than real. Genetics. 1999;153(4):1591–1600.
  • Zampar GG, Kümmel A, Ewald J, et al. Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast. Mol Syst Biol. 2013;9:651.
  • Martins TS, Costa V, Pereira C. Signaling pathways governing iron homeostasis in budding yeast. Mol Microbiol. 2018;109(4):422–432.
  • Rodrigues-Pousada C, Devaux F, Caetano SM, et al. Yeast AP-1 like transcription factors (Yap) and stress response: a current overview. Microb Cell. 2019;6(6):267–285.
  • Mizuno-Yamasaki E, Rivera-Molina F, Novick P. GTPase networks in membrane traffic. Annu Rev Biochem. 2012;81:637–659.
  • Pfeffer SR. Rab GTPase regulation of membrane identity. Curr Opin Cell Biol. 2013;25(4):414–419.
  • Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009; 10(8):513–525.
  • Schwartz SL, Cao C, Pylypenko O, et al. Rab GTPases at a glance. J Cell Sci. 2007;120(Pt 22):3905–3910.
  • Nakatsukasa K, Kanada A, Matsuzaki M, et al. The nutrient stress-induced small GTPase Rab5 contributes to the activation of vesicle trafficking and vacuolar activity. J Biol Chem. 2014;289(30):20970–20978.